19Fall 化工熱力學

Ch. 3 Conservation of Energy

Instructor: Bing Joe Hwang (bjh@mail.ntust.edu.tw) Office: IB 1208

1. Conservation of Energy

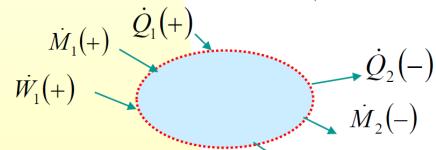
3. Thermodynamic Properties of Matter

The goals of this chapter

- Use the differential form of pure component energy balance in problem solving.
- Use the difference form of pure component energy balance in problem solving.
- Compute changes in energy with changes in T and P for the ideal gas
- Compute changes in energy with changes in T and P for real liquids using tables and charts of thermodynamic properties

The conservation of Energy

 $\bullet \quad \theta = U + M \left(v^2 / 2 + \psi \right)$


U: total internal energy $v^2/2$: kinetic energy per unit mass ψ : potential energy per unit mass

 $\theta_{gen} = 0$ (energy is a conserved property)

Energy balance equation

 $\frac{d}{dt}\left\{U+M\left(\frac{v^2}{2}+\psi\right)\right\}_{system} = \left(Rate\ at\ which\ energy\ enters\ the\ system\right) -$

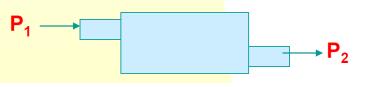
(*Rate at which energy leaves the system*)

Energy flow, hear and work

- Energy flow accompanying mass flow
- Heat

$$\dot{Q} = \sum \dot{Q}_i$$

 $\sum \dot{M}_{k} (\hat{U} + v^{2} / 2 + \psi)_{k}$


- Work:
 - Shaft work (W_s): The mechanical energy flow that occurs without a deformation of the system boundaries (including electrical energy).

 $\dot{W}_{s}(+)$: surroundings do work on the system

♦ W_F: The work results from the movement of the system boundaries

$$\dot{W}_F = F \frac{dl}{dt} = -P \frac{dV}{dt} \qquad \qquad dV < 0 \implies W_F > 0$$

 Flow work: The work of flow in and flow out for open systems (P∆V type)

net flow work =
$$\sum \dot{M}_{k} (P\hat{V})_{k}$$

Energy Balance Equation (EBE)

$$\frac{d}{dt}\left[U + M\left(v^{2}/2 + \psi\right)\right]_{system} = \sum \dot{M}_{k}\left(\dot{U} + v^{2}/2 + \psi\right)_{k} + \dot{Q} + \dot{W}_{s} - \left(P\frac{dV}{dt}\right)_{system} + \sum \dot{M}_{k}\left(PV\right)_{k}$$
or
$$h$$

$$\frac{d}{dt}\left[U+M\left(v^{2}/2+\psi\right)\right]_{system} = \sum \dot{M}_{k}\left(\dot{H}+v^{2}/2+\psi\right)_{k} + \dot{Q}+\dot{W}_{s}-\left(P\frac{dV}{dt}\right)_{system}$$

where H = U + PV

- Special cases:
 - Closed system

$$\dot{M}_{k} = 0, \ dM / dt = 0$$

$$\left(\frac{dU}{dt}\right)_{system} + M_{system}\frac{d}{dt}\left(v^{2} / 2 + \psi\right)_{system} = \dot{Q} + \dot{W}_{s} - \left(P\frac{dV}{dt}\right)_{system}$$

- Adiabatic process $\dot{Q} = 0$
- Open steady-state system

$$dM / dt = 0, \ dV / dt = 0, \ \frac{d}{dt} \left[U + M \left(v^2 / 2 + \psi \right) \right]_{system} = 0$$
$$0 = \sum \dot{M}_k \left(\hat{H} + v^2 / 2 + \psi \right)_k + \dot{Q} + \dot{W}_s$$

$$\frac{d}{dt}\left[U + M\left(v^2 / 2 + \psi\right)\right]_{system} = \sum \dot{M}_k \left(\hat{H} + v^2 / 2 + \psi\right)_k + \dot{Q} + \dot{W}_s - \left(P\frac{dV}{dt}\right)_{system}$$

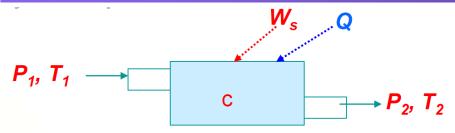
Integration of *t* from $t = t_1$ to $t = t_2$

$$\begin{bmatrix} U + M(v^2/2 + \psi) \end{bmatrix}_{t_2} - \begin{bmatrix} U + M(v^2/2 + \psi) \end{bmatrix}_{t_1} = \\ \sum \int_{t_1}^{t_2} \dot{M}_k (\hat{H} + v^2/2 + \psi)_k dt + Q + W_s - \int_{Vatt_1}^{Vatt_2} P dV$$

where


$$Q = \int_{t_1}^{t_2} \dot{Q} dt$$
$$W_s = \int_{t_1}^{t_2} \dot{W}_s dt$$

Examples


- Illustration 3.2-1 compressor operates at steady-state
 - Showing that the final results should not depend on the choice o system

$$Q + W_s = \left(\hat{H}_2 - \hat{H}_1\right) \Delta M$$

Open system

Mass balance:

$$M\Big|_{t+\Delta t} - M\Big|_{t} = \int_{t}^{t+\Delta t} \dot{M}_{1} dt + \int_{t}^{t+\Delta t} \dot{M}_{2} dt = \Delta M_{1} + \Delta M_{2} = 0 \Longrightarrow \Delta M_{1} = -\Delta M_{2}$$

 $= \int_{t}^{t+\Delta t} \dot{M}_{1} \left(\hat{H}_{1} + v_{1}^{2} / 2 + \psi_{1} \right) dt + \int_{t}^{t+\Delta t} \dot{M}_{2} \left(\hat{H}_{2} + v_{2}^{2} / 2 + \psi_{2} \right) dt + W_{s} + W_{F} + Q$

At steady-state

$$\begin{split} M\Big|_{t+\Delta t} &= M\Big|_{t}, \ \left[U + M\left(v^{2} / 2 + \psi\right)\right]_{t+\Delta t} = \left[U + M\left(v^{2} / 2 + \psi\right)\right]_{t+\Delta t} \\ &\left(\hat{H}_{i} + v_{i}^{2} / 2 + \psi_{i}\right) \ do \ not \ change \ in \ time \end{split}$$

Volume of system (V) *is constant,* $dV = 0 \implies W_F = 0$

 $0 = \Delta M_1 \hat{H}_1 + \Delta M_2 \hat{H}_2 + W_s + Q \quad \text{(Neglect the changes of KE & PE terms)}$ or $Q + W_s = \left(\hat{H}_2 - \hat{H}_1\right) \Delta M$

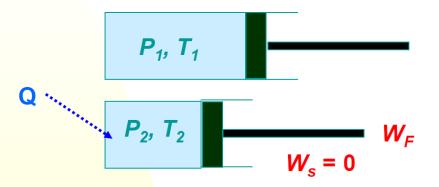
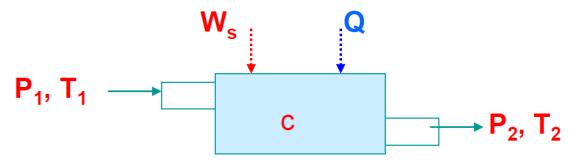

Examples

Illustration 3.2-2

A mass M of gas is to be compressed from (T_1, P_1) to (T_2, P_2) in

- ⋆ (a) A one-step process in a frictionless piston & cylinder or
- (b) by a flow compressor as previous case.

<Sol> (a) closed system: gas within the piston & cylinder

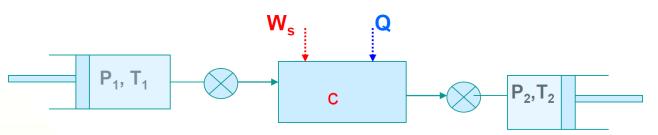


Energy balance:

No flow-in & flow-out, neglect KE & PE terms

$$Q + W = M(\hat{U}_2 - \hat{U}_1)$$

where $W = W_s + W_F = 0 - \int P dV$
$$Q - \int P dV = M(\hat{U}_2 - \hat{U}_1)$$



Energy balance:

$$Q + W = M(\hat{H}_2 - \hat{H}_1)$$

where $W_F = -\int P dV = 0 \implies W = W_s$
$$Q + W_s = M(\hat{H}_2 - \hat{H}_1)$$

$$(Q+W)_{(casea)} \neq (Q+W)_{(caseb)}$$

Inject the gas M into the compressor inlet stream

$$W_1 = -\int P dV = -P_1(-V_1) = P_1 \hat{V}_1 M$$

- ★ Compress from (T₁, P₁) to (T₂, P₂) using a compressor $(Q+W)_c = M(\hat{H}_2 \hat{H}_1)$
- Withdraw the gas M from the compressor (refill the second cylinder)

$$W_2 = -\int P dV = -P_2(V_2) = -P_2 \hat{V}_2 M$$

$$Q + W = (Q + W)_{c} + W_{1} + W_{2}$$

= $M(\hat{H}_{2} - \hat{H}_{1}) + P_{1}\hat{V}_{1}M - P_{2}\hat{V}_{2}M$
= $M(\hat{U}_{2} - \hat{U}_{1})$

Example

Illustration 3.2-3 Joule-Thomson or isenthalpic expansion

$$T_1, P_1, \dot{N}_1 \longrightarrow P_2, \dot{N}_2 \Rightarrow T_2 = ?$$

- Assumptions:
 - Q = 0
 - KE & PE terms are neglected
- <sol>
 - System: valve (open system)
 - Mass balance

$$0 = \dot{N}_1 + \dot{N}_2 \Longrightarrow \dot{N}_1 = -\dot{N}_2$$

Energy balance

$$0 = \dot{N}_1 \underline{H}_1 + \dot{N}_2 \underline{H}_2 = \dot{N}_1 (\underline{H}_1 - \underline{H}_2)$$

$$\Rightarrow \underline{H}_1 (T_1, P_1) = \underline{H}_2 (T_2, P_2)$$

- If <u>H</u> (T, P), T_1 , P_1 , and P_2 are given, we can solve T_2 from <u>H</u> (T_2 , P_2)
 - Joule-Thomson expansion
 - Valve: Throttling valve

- Thermodynamic properties (P, V, T, U, H, S, A, G, μ, f, C_ν, C_ρ,....)
- state change => thermodynamic property changes
- Specify the state of system (degree of freedom)
- Phase rule: $F = 2 + C \Pi$
 - Degree of freedom (F) is 2 for a single phase (Π = 1) and single component (C = 1) system.
 - ☆ Thermodynamic properties = f (T, P) or f (T, V)
 - T and P are easier to measure and manipulate than others
 - Using volumetric EOS (*P*-<u>V</u>-T) or thermal EOS (<u>U</u>-T-<u>V</u>) calculates other thermodynamic properties.
- ♦ Ideal gas law (EOS): PV = RT

Temp. dependence of U and H

$$\frac{Q}{N} = C \Delta T = C \left(T \Big|_{t2} - T \Big|_{t1} \right)$$

* **Q:** heat added to the system between t_1 and t_2

- & C: parameter, f(T)
- Measurement is made at constant V and with W_s = 0

$$U|_{t^2} - U|_{t^1} = Q = NC_V \left(T|_{t^2} - T|_{t^1} \right) \implies C_V = \frac{U|_{t^2} - U|_{t^1}}{N \left(T|_{t^2} - T|_{t^1} \right)} = \frac{\underline{U}|_{t^2} - \underline{U}|_{t^1}}{T|_{t^2} - T|_{t^1}}$$

Definition of C_V

$$C_{V}(T,V) = \frac{\lim_{\Delta T \to 0} \frac{\underline{U}|_{t^{2}} - \underline{U}|_{t^{1}}}{T|_{t^{2}} - T|_{t^{1}}} = \left(\frac{\partial \underline{U}}{\partial T}\right)_{V} = \left[\frac{\partial \underline{U}(T,V)}{\partial T}\right]_{V}$$

 Measurement is made at constant P (Volume was changed during the heating process) & definition of C_P

$$Q = U|_{t2} - U|_{t1} + P(V|_{t2} - V|_{t1}) = H|_{t2} - H|_{t1} = NC_P(T|_{t2} - T|_{t1})$$
$$\Rightarrow C_P(T, P) = \left(\frac{\partial \underline{H}}{\partial T}\right)_P = \left[\frac{\partial \underline{H}(T, P)}{\partial T}\right]_P$$

Ideal gas heat capacity

- H and U of Ideal gases are functions only of temperature.
- C_p^* and C_V^* are also dependent on temperature only.

$$C_P^*(T) = \frac{d\underline{H}}{dT} \text{ and } C_V^*(T) = \frac{d\underline{U}}{dT}$$
$$C_P^* = a + bT + cT^2 + dT^3 + \dots$$

Since $\underline{H} = \underline{U} + P\underline{V}$, and for the ideal gas $P\underline{V} = RT$, we have $\underline{H} = \underline{U} + RT$ and

$$C_{P}^{*}(T) = \frac{d\underline{H}}{dT} = \frac{d(\underline{U} + RT)}{dT} = C_{V}^{*}(T) + R$$

0ľ

$$C_{V}^{*}(T) = C_{P}^{*}(T) - R = (a - R) + bT + cT^{2} + dT^{3} + \dots$$

The constants a, b, c, d,... are given in Appendix A. II.

Solve the energy balance eqs. => need to know the changes of <u>U</u> and <u>H</u> (∆<u>U</u> and <u>∆H</u>) only => <u>H</u> is arbitrary set equal to zero (reference state).

U and H at T for ideal gas

♦ <u>H</u> and <u>U</u> of Ideal gases at T

$$H^{IG}(T_2) = H^{IG}(T_1) + \int_{T_1}^{T_2} C_P^*(T) dT$$
$$\underline{H}^{IG}(T) = H^{IG}(T_R) + \int_{T_R}^{T} C_P^*(T) dT$$

where T_R is the reference temp. chosen as $\underline{H}^{IG}(T_R) = 0$.

$$\underline{U}^{IG}(T) = \underline{U}^{IG}(T_R) + \int_{T_R}^T C_V^*(T) dT = \left[\underline{H}^{IG}(T_R) - RT_R\right] + \int_{T_R}^T C_V^*(T) dT$$
$$= \int_{T_R}^T C_V^*(T) dT - RT_R$$

- - ★ Taken T_R = 0, then
 $\underline{H}^{IG}(T) = C_P^*T
 U^{IG}(T) = C_V^*T$

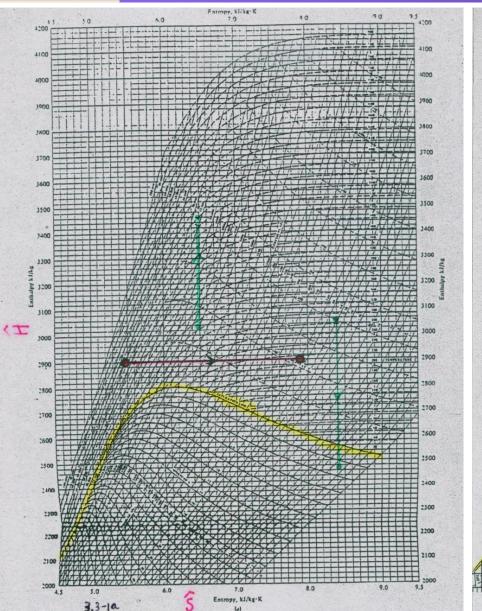
For pure real fluids

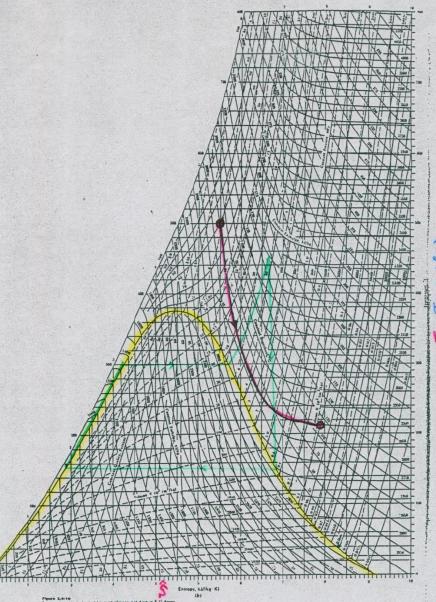
- Thermodynamic properties are not dependent on *T* only → phase rule *F* = 2 + 1 − *Π* = 3 − *Π*, *Π* = 1, *F* = 2 → f(*T*, *P*) or f(*T*, *V*)
- More complicated than those of ideal gases
- Experimental data ->
 - ★ Tables (e.g., Steam tables, Appendix A. III)
 - Figures (e.g., Figs. 3.3-1 to 3.3-4 for steam, methane, nitrogen, and HFC-134a)
- H-S chart (Mollier diagram): useful in turbine & compressor problems
- *H-P* chart: Useful in refrigeration problems
- T-S chart: Useful in engine & cycle analysis

Appendix III

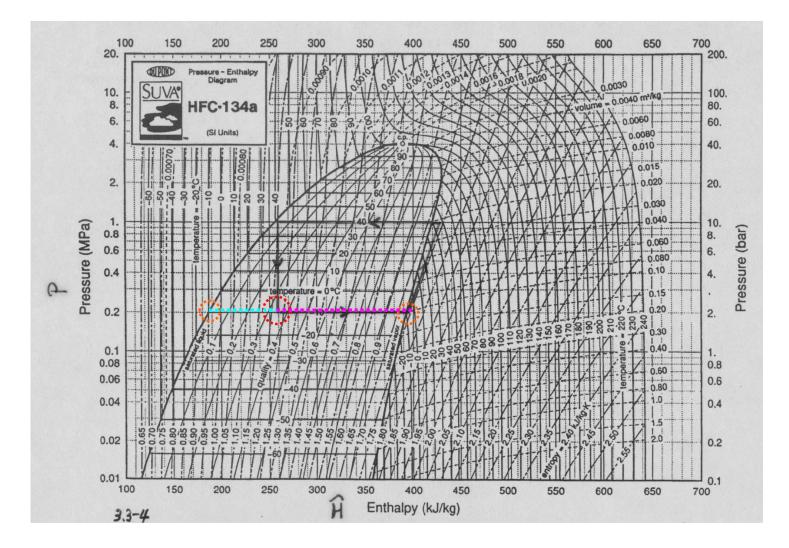
The Thermodynamic Properties of Water and Steam¹

THERMODYNAMIC PROPERTIES OF STEAM


Temp °C T	* Press. kPa P	Specific Volume		Internal Energy			Enthalpy			Entropy		
		Sat. Liquid \hat{V}^{L}	Sat. Vapor \hat{V}^{V}	Sat. Liquid \hat{U}^{L}	Evap. $\Delta \hat{U}$	Sat. Vapor \hat{U}^{V}	Sat. Liquid \hat{H}^{L}	Evap. $\Delta \hat{H}$	Sat. Vapor \hat{H}^{V}	Sat. Liquid Ŝ ^L	Evap. $\Delta \hat{S}$	Sat. Vapor Ŝ ^V
0.01	0.6113	0.001 000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.156
5	0.8721	0.001 000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.025
10	1.2276	0.001 000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.900
15	1.7051	0.001 001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814
20	2.339	0.001 002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672
25	3.169	0.001 003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580
30	4.246	0.001 004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533
35	5.628	0.001 006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.353
40	7.384	0.001 008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.257
45	9.593	0.001 010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.164
50	12.349	0.001 012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.076
55	15.758	0.001 015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.991
60	19.940	0.001 017	7.671	251.11	2205.5	2456.6	251.13	2358.5	2609.6	0.8312	7.0784	7.909
65	25.03	0.001 020	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	0.8935	6.9375	7.831
70	31.19	0.001 023	5.042	292.95	2176.6	2469.6	292.98	2333.8	2626.8	0.9549	6.8004	7.755
75	38.58	0.001 026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	7.682
80	47.39	0.001 029	3.407	334.86	2147.4	2482.2	334.91	2308.8	2643.7	1.0753	6.5369	7.612
85	57.83	0.001 033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.544
90	70.14	0.001 036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.479
95	84.55	0.001 040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.415
100	0.101 35	0.001 044	1.6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.354
105	0.120 82		1.4194	440.02	2072.3	2512.4	440.15	2245.7	2669.6	1.3650		
i 10	0.143 27	0.001 052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.238
115	0.169 06	0.001 056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7.183
120	0.198 53	0.001 060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.5276	5.6020	7.129
125	0.2321	0.001 065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.077
130	0.2701	0.001 070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	7.026


Superio	eated Vapo	*****				0.050 3.55	- (81 22)			= 0.10 MP		
	P =	0.010 MP	a (45.81)		P =	- 0.050 MP				ŝ		
T°C	Ŷ	Û	Ĥ	S	Ŷ	Ũ	Ĥ	Ŝ	Ŷ	U	n	
-	4.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	1.6940	2506.1	2675.5	7.3594
	4.869	2443.9	2592.6	8.1749	-		-	-		2506.7	2676.2	7.3614
	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	7.6947	1.6958			7.6134
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401	1.9364	2582.8 2658.1	2776.4 2875.3	7.8343
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580	2.172	2733.7	2974.3	8.0333
	24 136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556	2.406	- 2810.4 *		8.2158
300	26.445	2812.1	3076.5	9.2813	5.284		3075.5		3.103	2967.9	3278.2	8.5435
400	31.063	2968.9	3279.6	9.6077	6.209	2968.5	3278.9	8.8642 9.1546	3.565	3131.6	3488.1	8.8342
500	35.679	3132.3	3489.1	9,8978	7.134	3132.0	3488.7	9.1340	4.028	3301.9	3704.7	9.0976
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.6599	4.490	3479.2	3928.2	9.3398
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5 4158.9	9.8852	4.952	3663.5	4158.6	9.5652
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4396.3	10.0967	5.414	3854.8	4396.1	9.7767
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4640.5	10.2964	5.875	4052.8	4640.3	9.9764
1000	58.757	4053.0	4640.6	11.0393	11.751	4052.9	4891.1	10.4859	6.337	4257.3	4891.0	10.1659
	63.372	4257.5	4891.2	11.2287	12.674	4257.4 4467.8	5147.7	10.6662	6.799	4467.7	5147.6	10.3463
	67.987	4467.9	5147.8	11.4091	13.597	4683.6	5409.6	10.8382	7.260	4683.5	5409.5	10.5183
	72.602	4683.7	5409.7	11.5811	14.521				P = 0.40 MPa (143.63)			
	<i>P</i> .	- 0.20 MP	a (120.23)		P	= 0.30 MP					2738.6	6.8959
Sat.	0.8857	2529.5	2706.7	7.1272	0.6058	2543.6	2725.3	6.9919	0.4625	2553.6 2564.5	2752.8	6.9299
150	0.9596	2576.9	2768.8	7.2795	0.6339	2570.8	2761.0	7.0778	0.4708		2860.5	7.1700
200	1.0803	2654.4	2870.5	7.5066	0.7163	2650.7	2865.6	7.3115	0.5342	2646.8 2726.1	2964.2	7.378
250	1.1988	2731.2	2971.0	7.7086	0.7964	2728.7	2967.6	7.5166	0.5951 0.6548	2804.8	3066.8	7.566
300	1.3162	2808.6	3071.8	7.8926	0.8753	2806.7	3069.3	7.7022		2964.4	3273.4	7.898
400	1.5493	2966.7	3276.6	8.2218	1.0315	2965.6	3275.0	8.0330 8.3251	0.7726 0.8893	3129.2	3484.9	8.191
500	1.7814	3130.8	3487.1	8.5133	1.1867	3130.0	3486.0	8.5251	1.0055	3300.2	3702.4	8.455
600	2.013	3301.4	3704.0	8.7770	1.3414	3300.8	3703.2	8.8319	1.1215	3477.9	3926.5	8,698
700	2.244	3478.8	3927.6	9.0194	1.4957	3478.1	3927.1 4157.8	9.0576	1.2372	3662.4	4157.3	8.924
800	2.475	3663.1	4158.2	9.2449	1.6499	3662.9 3854.2	4137.8	9.2692	1.3529	3853.9	4395.1	9.136
900	2.706	3854.5	4395.8	9.4566	1.8041	4052.3	4639.7	9.4690	1.4685	4052.0	4639.4	9.336
1000	2.937	4052.5	4640.0	9,6563	1.9581	4052.3	4890.4	9.6585	1.5840	4256.5	4890.2	9.525
1100	3.168	4257.0	4890.7	9.8458	2.1121	4467.2	5147.1	9.8389	1.6996	4467.0	5146.8	9.706
1200	3.399	4467.5	5147.3	10.0262	2.2661	4683.0	5409.0	10.0110	1.8151	4682.8	5408.8	9.878
1300	3.630	4683.2	5409.3	10.1982	2.4201					= 0.80 MI	Pa (170.43	1)
	Р	= 0.50 MF	Pa (151.86) 	P = 0.60 MPa (158.85)							
Sat.	0.3749	2561.2	2748.7	6.8213	0.3157	2567.4	2756.8	6.7600	0.2404	2630.6	2839.3	6.815
200	0.4249	2642.9	2855.4	7.0592	0.3520	2638.9	2850.1	6.9665	0.2608	2715.5	2950.0	7.038
250	0.4744	2723.5	2960.7	7.2709	0.3938	2720.9	2957.2	7.1816	0.2931	2797.2	3056.5	7.232
300	0.5226	2802.9	3064.2	7.4599	0.4344	2801.0	3061.6	7.3724	0.3241 0.3544	2878.2	3161.7	7,408
350	0.5701	2882.6	3167.7	7.6329	0.4742	2881.2	3165.7	7.5464	0.3843	2959.7	3267.1	7.571
400	0.6173	2963.2	3271.9	7.7938	0.5137	2962.1	3270.3	7.7079	0.3843	3126.0	3480.6	7.867
500	0.7109	3128.4	3483.9	8.0873	0.5920	3127.6	3482.8	8.0021		3297.9	3699.4	8.133
600	0.8041	3299.6		7.3522	0.6697	3299.1	3700.9	8.2674	0.5018 0.5601	3476.2	3924.2	8.37
700	0.8969	3477.5	3925.9	8.5952	0.7472	3477.0	3925.3	8.5107		3661.1	4155.6	8.603
800	0.9896	3662.1	4156.9	8.8211	0.8245	3661.8	4156.5	8.7367	0.6181	3852.8	4393.7	8.81
900		3853.6	4394.7	9.0329	0.9017	3853.4		8.9486	0.6761	4051.0		9.01
1000		4051.8	4639.1	9.2328	0.9788	4051.5		9.1485	0.7340 0.7919	4255.6	4889.1	9.20
1100		4256.3	4889.9		1.0559	4256.1	4889.6		0.7919	4466.1	5145.9	9.38
1200		4466.8	5146.6		1.1330	4466.5		9.5185	0.8497	4400.1	5407.9	9.55
1300		4682.5	5408.6	9,7749	1.2101	4682.3	5408.3	9.6906	0.9010	4001.0		

\$Note: Number in parenthesis is temperature of saturated steam at the specified pressure


 \hat{V} [=] m³/kg; \hat{U}, \hat{H} [=] J/g = kJ/kg; \hat{S} [=] kJ/kg K

H-S & TS diagram for steam

Refrigeration cycle: P-H diagram

$$\hat{\theta} = \omega^{I} \hat{\theta}^{I} + \omega^{II} \hat{\theta}^{II} = \omega^{I} \hat{\theta}^{I} + (1 - \omega^{I}) \hat{\theta}^{II} \quad (3.3 - 9)$$

- For mixtures of steam and water, the mass fraction of steam is termed the steam "quality", and is frequently expressed as a percent.
- In Figs. 3.3-1 to 3.3-4, the properties of the two-phase mixture will fall along a line connecting the properties of the individual phases. → Eq. (3.3-9) the lever rule
- Property changes at different phases

$$\begin{aligned} \Delta_{vap}\hat{H} &= \hat{H}^{V} - \hat{H}^{L} \\ \Delta_{vap}\underline{H} &= \underline{H}^{V} - \underline{H}^{L} = molar \ enthalpy \ of \ vaporization \\ \Delta_{fus}\underline{H} &= \underline{H}^{L} - \underline{H}^{S} = molar \ enthalpy \ of \ melting \ or \ fusion \\ \Delta_{sub}\underline{H} &= \underline{H}^{V} - \underline{H}^{S} = molar \ enthalpy \ of \ sublimation \end{aligned}$$

- Since the value of \underline{PV} is much smaller than that of $\underline{U} \rightarrow \underline{H} = \underline{U} + P\underline{V} \approx \underline{U}$
- For incompressible fluids (solids and most liquids far away from their critical points),

$$\left(\frac{d\underline{V}}{dP}\right)_T = 0$$
 and \underline{U} , C_P , C_V are function of T only.

DuLong and Petit correlation => C_p for solids

$$C_{P} = 3NR = 24.942 N \frac{J}{mol \ K}$$

N: the number of atoms in the formula unit. C_p of Pb, Au, AI at 25°C are 26.8, 25.2, and 24.4 (J/mol K), respectively. The predicted C_p of Fe₃C is 99.8 (J/mol K); experimental value is 105.9 (J/mol K).

- 1. system choice
- 2. mass and energy balance equations

3.
$$\underline{H}, \underline{U} \rightarrow P, \underline{V}, T \rightarrow f(P, T)$$

Thermal EOS
 $\underline{U} = f(T, \underline{V})$
Volumetric EOS
 $P = f(T, \underline{V})$

- 4. balance eqs. → f (P, T, mass, W_s , Q)
- 5. If number of unknown = number of the equations →
 <<the problem can be solved>>
 If number of unknown > number of the equations →
 <<need additional balance equations>>
 e.g. entropy balance equations

Examples from 3.4-1 to 3.4-8