

National Taiwan University of Science and Technology

Electrochemical Engineering Chapter 5: Mass Transport

黄 炳 照 (Bing Joe Hwang) bjh@mail.ntust.edu.tw NTUST

Flux density

Total flux of solute i, J_i

 $J_i = dN_i/dt$

Flux density of solute i, j_i

 $j_i = (1/A)dN_i/dt$

Transport	Occurs in response to	
migration	a gradient of electrical potential	
diffusion	a gradient of activity or concentration	
convection	a gradient of pressure	

Migration	~	$ abla \Phi$	

- Diffusion ~ ∇C
- Convection ~ ∇P

Brownian motion,

 $\Delta G = \Delta H - T\Delta S$

Electrochemical potential

 $\mu_i = RTlna_i + z_iF\Phi$

The flux density equation,

$$\begin{split} \mathbf{j}_i &= -(\mathbf{C}_i \mathbf{D}_i / \mathbf{R} \mathbf{T}) \nabla \mu_i + \mathbf{C}_i \mathbf{v} \\ &= -(\mathbf{C}_i \mathbf{D}_i / \mathbf{R} \mathbf{T}) (\mathbf{R} \mathbf{T} \nabla (\mathbf{ln} \mathbf{a}_i) + \mathbf{z}_i \mathbf{F} \nabla \Phi) + \mathbf{C}_i \mathbf{v} \end{split}$$

Nernst-Planck equation, (assume $a_i \sim C_i$)

$$\begin{aligned} \mathbf{j}_i &= -(\mathbf{C}_i \mathbf{D}_i / \mathbf{RT}) (\mathbf{RT} \nabla \mathbf{ln} \mathbf{C}_i + \mathbf{z}_i \mathbf{F} \nabla \Phi) &+ \mathbf{C}_i \mathbf{v} \\ &= -\mathbf{D}_i \nabla \mathbf{C}_i &- (\mathbf{z}_i \mathbf{FD}_i \mathbf{C}_i / \mathbf{RT}) \nabla \Phi &+ \mathbf{C}_i \mathbf{v} \\ &= -\mathbf{D}_i \nabla \mathbf{C}_i &- (\mathbf{z}_i \mathbf{u}_i \mathbf{C}_i / |\mathbf{z}_i|) \nabla \Phi &+ \mathbf{C}_i \mathbf{v} \end{aligned}$$

 $\mathcal{J}_{i} = -\mathcal{D}_{i} \nabla \mathcal{G}_{i} - \frac{\mathcal{G}_{i} \mathcal{F}}{\mathcal{R}_{i}} \mathcal{D}_{i} \mathcal{G}_{i} \nabla \mathcal{P} + \mathcal{G}_{i} \mathcal{V}$

D. Flusion Migration

Convection

No mixing (flow) $\overline{J_{i}} = -\overline{P_{i}} \overline{V \mathcal{E}_{i}} - \frac{\overline{Z_{i}} \overline{F}}{RT} \overline{P_{i}} \frac{\overline{Q_{i}}}{\overline{Q_{i}}} \overline{U} \phi$

solution : electroactive species

electrolyte

 $U_{j} = \frac{(Z_{j})FD_{j}}{RT}$ One-dimension eq. $\mathcal{T}_{i}(x) = -\mathcal{D}_{i}\left(\frac{\partial \mathcal{G}_{i}(x)}{\partial x}\right) - \frac{\mathcal{Z}_{i}\mathcal{F}}{\mathcal{R}_{T}}\mathcal{D}_{i}\mathcal{G}_{i}\frac{\partial \mathcal{G}_{i}(x)}{\partial x}$ flox 2,. $\frac{2j}{Z_{j}} = \frac{2d_{j}}{Z_{j}} + \frac{2m_{j}}{Z_{j}}$ $\frac{2j}{Z_{j}} = \frac{2d_{j}}{Z_{j}} + \frac{2m_{j}}{Z_{j}}$ $\frac{2}{Z_{j}} = \frac{2}{Z_{j}} + \frac{2}{Z_{j}} + \frac{2}{Z_{j}}$ $\frac{2}{Z_{j}} = \frac{2}{Z_{j}} + \frac{2}{Z_{j}} + \frac{2}{Z_{j}}$ Current rd,

Concentration profiles

Do - Co Co* mol 10 Cm².S = mo ((0"- 6) × Lo Diffusion layer transfer mass thickness (0(X=0) し。 Carrent O+ne=R density 197 A · n f 5 Carrent ? Amp Current density へ 2/A Jo η Į Α

Current-potential curve for a nernstian reaction involving two soluble species with only oxidant present initially

 $i^{c} = nFm_{o}c_{o}^{*}$

(Co -7) 1

ia =-n F mg Cg*

 $(\zeta_{k} \rightarrow 0)$

i=nFAmo (Co*-Co) $i_{g}^{c} = nFAm_{o}C_{o}^{*} \implies C_{o}^{*} = \frac{i_{e}^{c}}{nFAm_{o}}$

 $\frac{1}{1_{0}^{c}} = 1 - \frac{C_{0}}{C_{0}^{*}} = C_{0} = C_{0}^{*} \left(1 - \frac{1}{C_{0}}\right)$

 $i = + nFA m_R (C_R - C_R^*) \int G_R = L_R^* (1 - \frac{1}{L_R^a})$ $i_R^a = - nFA m_R G_R^*$ $\frac{1}{l_e^{\alpha}} = 1 - \frac{c_R}{c_{R^*}}$

 \mathcal{C}^{\star} Case a = Cr=0 $i = nFA(C_R - 0) = nFAC_R$ Ē (-) $E = E^{o'} + \frac{RT}{hF} \ln \frac{C_{o}}{C}$ $= \overline{E}^{o'} + \frac{R_7}{h_7} \ln \frac{C_o^* \left(1 - \frac{n}{n_e}\right)}{1 - \frac{1}{n_e}}$ formalial $= \left(\overline{E}^{0'} + \frac{RT}{nF} \ln \frac{m_{R}}{m_{0}} + \frac{RT}{nF} \ln \frac{m_{R}}{m_{0}} \right)$ $if i = \frac{1}{2} \lambda_0^2$ =) Ey

Effect of mass transfer

Current-potential curve for a nernstian reaction involving two soluble species with both forms initially present

Current-potential curve for a nernstian system where the reduced form is insoluble

NTUST

Coupled Irreversible Chemial rXHs

 $O + h e = R \quad (E)$ $\xrightarrow{R} T (C)$ $\xrightarrow{H_2} H (C)$ NHZ = 1 + 2 + 1 + 2 e \hat{O} 0 (1 11-1 Ŋ

Effect of an irreversible following homogeneous chemical reaction on nernstian i-E curves at a RDE

1.12

 $C_{R}^{*} = 0 / \frac{1}{2} = m_{0} [(\sqrt{2} - C_{0}] = m_{R} C_{R} + M_{R} C_{R}$ NFA

Nornstian rxn

 $E = E' + \frac{RT}{hF} ln \frac{C_{o}}{C_{F}}$ Ne-1 nFAMO

(mR+MR) NFA "+ RT lu mathe 1Ri lu 12-1 + nj- lu mo + nj lu 12-1 E=E

Ex

Kohlrausch limiting law (in sufficiently dilute solution)

$$u_i = u_i^o$$
 - constant $(\mu)^{1/2}$

where is $\boldsymbol{\mu}$ the ionic strength of solution.

$$\mu = (1/2)\sum z_i^2 C_i$$

Onsager theory for the constant,

Electrophoretic effect: Electrostatic drag that an anion going in one direction has on a cation heading in the opposite direction.

Relaxation effect: Spatial offset between a moving ion and its accompanying ionic atmosphere.

Onsager limiting law for a binary electrolyte

$(u_i/u_i^0) = 1 -$	$[(39.4 \times 10^{-9} \text{m}^2 \text{V}^{-1} \text{s}^{-1} \textbf{z}_i) / u_i^0$	-	(z _i 7
Mobility coff.	Electrophoretic term		

 $(z_i z_j h/(1+h^{1/2}))(\mu/1567 \text{ mol m}^{-3})^{1/2}$ Relaxation term

Hopping mechanism

Hydrogen ions - Hydronium ion

Hydroxide ions

Electrophoresis

7 Transport

Law of diffusion

Fick's 2nd law for planar diffusion

 $\partial C/\partial t = D \partial^2 C/\partial x^2$

Fick's 2nd law for sperical diffusion

 $\partial C/\partial t = D \partial^2 C/\partial r^2 + (2D/r) \partial C/\partial r$

Diffusivity of species

Values of the diffusivity of species in various media at 25°C

Diffusant	$D/m^2 {\rm s}^{-1}$	Medium
H ₂ O	2.44×10^{-9}	H ₂ O
O ₂ (aq)	2.26×10^{-9}	H ₂ O
	0.690×10^{-9}	0.1 м KNO ₃
Cd ²⁺ (aq)	0.715×10^{-9}	0.1 м КСІ
	0.681×10^{-9}	1.0 м KCl
Zn ²⁺ (aq)	0.638×10^{-9}	0.1 м KNO ₃
	0.620×10^{-9}	1.0 м KNO ₃
	0.654×10^{-9}	0.1 м NaOH
Pb ²⁺ (aq)	0.828×10^{-9}	0.1 M KNO ₃
	0.867×10^{-9}	0.1 м KCl
	1.015×10^{-9}	0.1 м KCl
IO ₃ (aq)	0.989×10^{-9}	1.0 м KCl
$Fe(CN)_6^{4-}(aq)$	0.650×10^{-9}	0.1 м KCl
ascorbic acid(aq)	1.027×10^{-9}	0.1 M NaCl
Cd(amal)	1.66×10^{-9}	Hg
Zn(amal)	1.89×10^{-9}	Hg
Pb(amal)	1.41×10^{-9}	Hg

Diffusion experiments

$$C = (C^{b}/2)erfc\{x/(2(Dt)^{1/2})\}$$

Electroneutrality

 $\mathbf{z}_{+}\mathbf{C}_{+}$ = $\mathbf{z}_{-}\mathbf{C}_{-}$

Nernst-Einstein law

Anion must be unifrom throughout the cell,

 $a.^{r}/a.^{l} = exp\{ (-z.F/RT)(\Phi^{r} - \Phi^{l}) \}$

Nernst-Einstein equation,

 $u_{-}/D_{-} = |z_i|F/RT$

Balance sheet

Rotating disk

Consevation law

 $\partial C/\partial t = D \partial^2 C/\partial x^2 - v_x \partial C/\partial x$

Continuity condition

 $(1/r) \partial (rv_r)/\partial r + \partial v/\partial x = 0$

Navier-Stokes equations for x-direction

 $\rho[\mathbf{v}_r \partial \mathbf{v}/\partial \mathbf{r} + \mathbf{v}_x \partial \mathbf{v}/\partial x] = \eta[1/r\partial/\partial r(r\partial \mathbf{v}/\partial r) + \partial^2 \mathbf{v}/\partial x^2] - \partial p/\partial x$

Karman equations

Von Kármán results; $\zeta = 2.11 \exp\left\{-0.884 x \sqrt{\omega d/\eta}\right\}$

$x\sqrt{\omega d/\eta} =$ dimensionless axial coordinate	$-v_x =$ upward velocity toward the disk	$v_r = radial$ velocity away from axis	v_{θ} = angular velocity around the axis
0	0	0	ωr
small	$0.510x^2\sqrt{\omega^3 d/\eta}$	$0.510 rx \sqrt{\omega^3 d/\eta}$	$\omega(r - 0.616x)$
1	$0.268\sqrt{\eta\omega/d}$	0.182 <i>wr</i>	$0.477\sqrt{\eta\omega/d}$
large	$\sqrt{\eta\omega/d} \left[0.884 - \zeta \right]$	0.443 <i>wr</i> ζ	0.443wr5
œ	$0.884\sqrt{\eta\omega/d}$	0	0

Dimensionless varible

 $x(\omega \rho/\eta)^{0.5}$

Hydrodynamic layer

 $x = (\eta/\omega\rho)^{0.5}$ (`~100 μ m)

Flux density at the electrode surface

$$j_i^{\ s} = 0.62(\rho/\eta) D_i^{\ 2/3} (C_i^{\ s} - C_i^{\ b})(\omega)^{1/2}$$