Electrochemical Engineering Chapter 5：Mass Transport

黄 炳 照（Bing Joe \mathcal{H} wang）
6jh＠mail．ntust．edu．tw
NTUST

Total flux of solute $\mathbf{i}, \mathbf{J}_{\mathbf{i}}$

$$
\mathbf{J}_{\mathbf{i}}=\mathbf{d} \mathbf{N}_{\mathbf{i}} / \mathbf{d t}
$$

Flux density of solute $\mathbf{i}, \mathbf{j}_{i}$

$$
\mathbf{j}_{\mathrm{i}}=(\mathbf{1} / \mathbf{A}) \mathbf{d} \mathbf{N}_{\mathrm{i}} / \mathbf{d t}
$$

Transport	Occurs in response to
migration	a gradient of electrical potential
diffusion	a gradient of activity or concentration
convection	a gradient of pressure

Migration ~ $\quad \nabla \Phi$

Diffusion ~ $\quad \nabla \mathbf{C}$

Convection ~ $\boldsymbol{\nabla} \mathbf{P}$
Brownian motion,

$$
\Delta \mathbf{G}=\Delta \mathbf{H} \quad-\quad \mathbf{T} \Delta \mathbf{S}
$$

Electrochemical potential

$$
\mu_{\mathrm{i}}=\mathbf{R T l n}_{\mathbf{i}}+\mathbf{z}_{\mathbf{i}} \mathbf{F} \mathbf{\Phi}
$$

The flux density equation,

$$
\begin{aligned}
\mathbf{j}_{\mathbf{i}} & =-\left(\mathbf{C}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} / \mathbf{R T}\right) \nabla \mu_{\mathbf{i}}+\mathbf{C}_{\mathbf{i}} \mathbf{v} \\
& =-\left(\mathbf{C}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} / \mathbf{R T}\right)\left(\mathbf{R T} \nabla\left(\ln \mathbf{a}_{\mathbf{i}}\right)+\mathbf{z}_{\mathbf{i}} \mathbf{F} \nabla \Phi\right)+\mathbf{C}_{\mathbf{i}} \mathbf{v}
\end{aligned}
$$

Nernst-Planck equation, (assume $\mathbf{a}_{\mathbf{i}} \sim \mathbf{C}_{\mathbf{i}}$)

$$
\begin{aligned}
\mathbf{j}_{\mathbf{i}} & =-\left(\mathrm{C}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} / \mathbf{R T}\right)\left(\mathbf{R T} \nabla \ln _{\mathrm{i}}+\mathbf{z}_{\mathbf{i}} \mathbf{F} \nabla \Phi\right)+\mathrm{C}_{\mathbf{i}} \mathbf{v} \\
& =-\mathbf{D}_{\mathbf{i}} \nabla \mathrm{C}_{\mathbf{i}}-\left(\mathbf{z}_{\mathbf{i}} \mathbf{F D}_{\mathbf{i}} \mathrm{C}_{\mathbf{i}} / \mathbf{R T}\right) \nabla \Phi+\mathbf{C}_{\mathbf{i}} \mathbf{v} \\
& =-\mathbf{D}_{\mathbf{i}} \nabla \mathrm{C}_{\mathbf{i}}-\left(\mathbf{z}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}} \mathrm{C}_{\mathbf{i}} /\left|\mathbf{z}_{\mathbf{i}}\right|\right) \nabla \Phi+\mathbf{C}_{\mathbf{i}} \mathbf{v}
\end{aligned}
$$

$$
J_{j}=-D_{i} \nabla C_{j}-\frac{\sum_{k} F}{R T} D_{j} C_{j} V \phi+C_{j} V
$$

Diffusion Migration Convection

No mixing (flow)

$$
J_{j}=-D_{j} \nabla_{E_{j}}-\frac{Z_{j} \cdot F}{N T} D_{j} C_{j} \Pi_{j}
$$

solution: electruactive species
electrolyte

One-dimension eq

$$
U_{j}=\frac{1 Z_{1} \cdot F D_{j}}{R T}
$$

$f \ln x \quad J_{j}(x)=-D_{j} \cdot\left(\frac{\partial C_{j} \cdot(x)}{\partial x}\right)-\frac{Z_{j} F}{P_{T}} D_{j} C_{j} \cdot \frac{\partial \phi(x)}{\partial t}$
\downarrow
Current

$$
\frac{i j}{i_{j} F A}=\frac{i_{d, j}}{Z \cdot F A}+\frac{2_{m j}}{8, F A}
$$

$$
i_{j}=i_{d_{i j}}+i_{m_{j}}
$$

Concentration profiles

$$
j_{i}(x)=-D \frac{\partial C_{i}}{\partial x}-\frac{2_{i} \cdot F}{R T} D_{i} \cdot \frac{\partial \phi}{\partial x}+\underline{C_{i}} Z_{1}(x)
$$

Migration Convection
Electrode Diffusion (supporting electrolytes

$$
0+n e=R
$$

carrent $i \quad\left(\frac{C}{s}\right) \frac{i}{z}=j_{0} \cdot n F \cdot A$
current density

$$
i / A \quad \frac{i}{n F A}=j_{0}
$$

Current-potential curve for a nernstian reaction involving two soluble species with only oxidant present initially

$$
\begin{aligned}
& i_{l}^{c}=n F m_{0} c_{0}^{*} \quad\left(c_{0} \rightarrow \Delta 1\right. \\
& i_{R}^{a}=-n F m_{R} c_{R}^{*} \quad\left(c_{k} \rightarrow 0\right)
\end{aligned}
$$

Nernstian reaction $\quad 0+n e \stackrel{k_{1}}{\vec{F}} R$

$$
\begin{aligned}
& E=E^{0^{\prime}}+\frac{R T}{n F} \ln \frac{C_{0}(x=0)}{C_{R}(x=\theta)} \\
& E=E^{0^{\prime}}+\frac{R T}{h F} \ln \frac{C_{0}^{*}}{C_{2}^{*}} i_{l}^{c} x \\
& C_{R-1}=i_{i l}^{C_{0}^{a}} \text { (EN }
\end{aligned}
$$

$$
\begin{aligned}
& i=\operatorname{nFA} m_{0}\left(C_{0}^{*}-C_{0}\right) \\
& i_{l}^{c}=n F A m_{0} C_{0}^{*} \Rightarrow C_{0}^{*}=\frac{i e^{c}}{n F A m_{0}} \\
& \frac{i}{i_{l}^{e}}=1-\frac{C_{0}}{C_{0}^{*}} \Rightarrow C_{0}=C_{0}^{*}\left(1-\frac{i}{i_{l}^{e}}\right) \\
& \left.i=\operatorname{nFA} m_{R}\left(C_{R}-C_{R}^{*}\right)\right\} C_{R}=C_{R}^{*}\left(1-\frac{i}{i_{l}^{a}}\right) \\
& i_{l}^{a}=-n F A m_{R} C_{R}^{*} \\
& \frac{i}{i_{l}^{a}}=1-\frac{C_{R}}{C_{R^{*}}}
\end{aligned}
$$

$$
\begin{aligned}
\text { formal }_{\text {potential }} & =E^{0^{\prime}}+\frac{R T}{n F} \ln \frac{C_{0}^{*}\left(1-\frac{i}{i_{e}^{c}}\right)}{i} \\
& =\left(E^{0^{\prime}}+\frac{R T}{n F} \ln \frac{m_{R}}{m_{0}}+\frac{R A m_{R}}{n F} \ln \frac{i_{e}^{c}-i}{\tau}\right. \\
\text { if } & =\frac{1}{i c} \Rightarrow F .
\end{aligned}
$$

$$
\begin{aligned}
& C_{R}^{*}=0 \quad C_{0}^{*} \\
& i=\operatorname{nF} A^{\frac{m_{R}}{(}\left(C_{R}-0\right)}=\operatorname{nF} A^{2} C_{R}^{2} \\
& E=E^{0^{\prime}}+\frac{12 T}{n_{T} T} \ln \frac{C_{0}}{C_{R}} \\
& \text { if } i=\frac{1}{2} i_{l}^{c} \quad \Rightarrow E_{1 / 2}
\end{aligned}
$$

Driving force

$$
\eta=E-E_{e q}
$$

overpotential i-E curve

 with both forms initially present

Over potential

$$
\eta(i)=F-E_{x q}
$$

Case (c) R insoluble
 $a_{R}=1$

$$
\begin{aligned}
& E_{\text {eq }}=E^{\prime} \frac{R T}{M T} \ln C_{0}^{*} \quad \text { Nernstian eq } \\
& \frac{R T}{R T} \ln \frac{i_{e}^{c}-i}{i_{e}^{c}} \quad E=E^{0^{\prime}}+\frac{R T}{n F} \ln C_{0} \\
& O=E-E_{e g}= E^{0^{\prime}}+\frac{R T}{n F} C_{0}^{*}+\frac{R T}{n F} \ln \left(\frac{1}{i_{p}^{c}}\right) \\
& Q=
\end{aligned}
$$

Current-potential curve for a nernstian system where the reduced form is

Coupled Irreversibla chemial rxus

$$
\begin{aligned}
& \rho+n e=R(E) \\
& R+T(C)
\end{aligned}
$$

Effect of an irreversible following homogeneous chemical reaction on nernstian i-E curves at a RDE

Assignments

$$
\begin{aligned}
& 1.2 \\
& 1.8 \\
& 1.12
\end{aligned}
$$

$$
\left.c_{R}^{*}=0\right) \frac{i}{n F^{A}}=m_{0}\left[C_{0}^{*}-C_{0}\right]=m_{R} C_{R}+\mu \beta C_{R}
$$

Nernstian rxn

$$
\begin{aligned}
E & =E^{0}+\frac{\lambda^{2} T}{n F} \ln \frac{C_{0}}{C_{R}} \\
C_{0} & =\frac{i_{l}^{c}-i}{n F A m_{R O}} \\
C_{R} & =\frac{1}{\left(m_{R}+\mu R_{R}\right) n F A} \\
E= & E_{E^{0}+\frac{R_{T} T}{n_{I}} \ln \frac{m_{R}+\mu R}{m_{0}}+\frac{1 B_{i}}{n F} \ln \frac{i_{l}^{c}-i}{1}}^{\bar{E}_{1 / 2}}
\end{aligned}
$$

Kohlrausch limiting law (in sufficiently dilute solution)

$$
\mathbf{u}_{i}=\mathbf{u}_{i}^{0}-\text { constant }(\mu)^{1 / 2}
$$

where is μ the ionic strength of solution.

$$
\mu=(\mathbf{1} / 2) \sum \mathbf{z}_{\mathrm{i}}^{2} \mathbf{C}_{\mathrm{i}}
$$

Onsager theory for the constant,
Electrophoretic effect: Electrostatic drag that an anion going in one direction has on a cation heading in the opposite direction.

Relaxation effect: Spatial offset between a moving ion and its accompanying ionic atmosphere.

Onsager limiting law for a binary electrolyte
$\left.\left(u_{i} / \mathbf{u}_{i}\right)^{0}\right)=1-\left[\left(39.4 \times 10^{-9} m^{2} V^{-1} s^{-1}\left|z_{i}\right|\right) / u_{i}^{0}-\left(z_{i} z_{j} h /\left(1+h^{1 / 2}\right)\right)\left(\mu / 1567 \mathrm{~mol} \mathrm{~m}^{-3}\right)^{1 / 2}\right.$
Mobility coff. Electrophoretic term Relaxation term

Stokes' law

$$
\begin{aligned}
& \left|z_{i}\right| \text { e } \Xi=6 \pi \eta r_{i} \mathbf{v}_{i} \\
& \mathbf{u}_{i}=v_{i} / \Xi=\left|z_{i}\right| e / 6 \pi \eta r_{i} \\
& \mathbf{r}_{\text {stokes }}=\left|z_{i}\right| e / 6 \pi \eta u_{i}^{0}
\end{aligned}
$$

Grothuss or Vehicle mechanism

Hopping mechanism
Hydrogen ions - Hydronium ion
Hydroxide ions

Electrophoresis
7 Transport

Electrophoresis

$$
\mathbf{u}_{\mathbf{i}}=\mathbf{v}_{\mathbf{i}} / \boldsymbol{\Xi}=\Delta \mathbf{x} / \boldsymbol{\Xi} \Delta \mathbf{t}_{\mathbf{i}}
$$

Electroosmosis ~ solution flow

Separation of DNA samples

Fick's 2nd law for planar diffusion

$$
a C / \partial t=D \partial^{2} C / \partial x^{2}
$$

Fick's 2nd law for sperical diffusion

$$
\partial \mathrm{C} / \partial \mathrm{t}=\mathrm{D} \partial^{2} \mathrm{C} / \partial \mathrm{r}^{2}+(2 \mathrm{D} / \mathrm{r}) \partial \mathrm{C} / \partial \mathrm{r}
$$

Diffusivity of species

Values of the diffusivity of species in various media at $\mathbf{2 5}^{\circ} \mathbf{C}$

Diffusant	$D / \mathrm{m}^{2} \mathrm{~s}^{-1}$	Medium
$\mathrm{H}_{2} \mathrm{O}$	2.44×10^{-9}	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{O}_{2}(\mathrm{aq})$	2.26×10^{-9}	$\mathrm{H}_{2} \mathrm{O}$
	0.690×10^{-9}	$0.1 \mathrm{M} \mathrm{KNO}_{3}$
$\mathrm{Cd}^{2+}(\mathrm{aq})$	0.715×10^{-9}	0.1 M KCl
	0.681×10^{-9}	1.0 M KCl
$\mathrm{Zn}^{2+}(\mathrm{aq})$	0.638×10^{-9}	$0.1 \mathrm{M} \mathrm{KNO}_{3}$
	0.654×10^{-9}	$1.0 \mathrm{M} \mathrm{KNO}_{3}$
$\mathrm{~Pb}^{2+}(\mathrm{aq})$	0.828×10^{-9}	0.1 M NaOH
$\mathrm{IO}_{3}^{-}(\mathrm{aq})$	0.867×10^{-9}	0.1 M KCl
$\mathrm{Fe}(\mathrm{CN})_{6}^{4-}(\mathrm{aq})$	0.650×10^{-9}	0.1 M KCl
ascorbic acid(aq)	1.027×10^{-9}	0.1 M NaCl
$\mathrm{Cd}(\mathrm{amal})$	1.66×10^{-9}	Hg
$\mathrm{Zn}^{2}(\mathrm{amal})$	1.89×10^{-9}	0.1 M KCl
$\mathrm{Pb}(\mathrm{amal})$	1.41×10^{-9}	Hg
	Hg	

Diffusion experiments

Diffusion experiments

$$
C=\left(C^{\mathbf{b}} / 2\right) \operatorname{erfc}\left\{\mathbf{x} /\left(2(D t)^{1 / 2}\right)\right\}
$$

Nernst-Einstein law

Electroneutrality

$$
\mathbf{z}_{+} \mathbf{C}_{+}=\mathbf{z}_{-} \mathbf{C}_{-}
$$

Nernst-Einstein law

$$
\begin{aligned}
& \left|\mathbf{z}_{\mathbf{i}}\right| \text { D. } \ln \left(\mathbf{C}_{-}^{\mathbf{r}} / \mathbf{C}_{-}^{\mathbf{l}}\right)=-\mathbf{z}_{-} \mathbf{u}\left(\Phi^{\mathbf{r}}-\Phi^{\mathbf{l}}\right) \\
& \mathbf{a}_{-}{ }^{\mathbf{r}} / \mathbf{a}^{\mathbf{l}}=\exp \left\{\left(-\mathbf{z}_{-} \mathbf{u} /\left|\mathbf{z}_{\mathbf{i}}\right| \mathbf{D}_{-}\right)\left(\Phi^{\mathbf{r}}-\Phi^{\mathbf{l}}\right)\right\}
\end{aligned}
$$

Anion must be unifrom throughout the cell,
$\mathbf{a}_{-}{ }^{\mathbf{r}} / \mathbf{a}_{-}{ }^{\mathbf{1}}=\exp \left\{(-\mathrm{z} \mathbf{F} /\right.$ RT $\left.)\left(\Phi^{\mathrm{r}}-\Phi^{\mathbf{l}}\right)\right\}$
Nernst-Einstein equation,
$\mathbf{u} . / \mathbf{D}_{\mathbf{I}}=\quad\left|\mathbf{z}_{\mathbf{i}}\right| \mathbf{F} / \mathbf{R T}$

NTUST

\square

NTUST

\square

Balance sheet

$$
\begin{aligned}
& C_{\mathrm{cu}^{2+}}=C_{\mathrm{Cu}^{*}} \quad C_{\mathrm{Ce}^{-}}=3 C_{\mathrm{Cu}^{2}+} \\
& \text { UCu't UCAH, Uce } \\
& \Theta_{\|}{ }^{\oplus} \\
& -\mathrm{Hg} / \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\left(10^{-3} \mathrm{M}\right), \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(10^{-3} \mathrm{M}\right), \mathrm{NH}_{3}(0.1 \mathrm{M}) / \mathrm{Hg} \\
& \mathrm{Cu}^{2+} \\
& \text { (Cathode) } \\
& t_{6}=0.5
\end{aligned}
$$

$\mathrm{NH}_{3}(\mathbf{0 . 1} \mathrm{M}), \mathrm{NaClO}_{4}(0.10 \mathrm{M})$
$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\left(10^{-3} \mathrm{M}\right), \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{+}\left(10^{-3} \mathrm{M}\right)$,
$\mathrm{Cl}^{-}\left(3 \times 10^{-3} \mathrm{M}\right), \mathrm{Na}^{+}(0.1 \mathrm{M}), \mathrm{ClO}_{4}^{-}(0.1 \mathrm{M})$
(a)

lons in cell
elect20 Byte

(b)

Transport to a rotating disk

Consevation law

$$
\partial C / \partial t=D \partial^{2} C / \partial x^{2} \quad-v_{x} \partial C / \partial x
$$

Continuity condition

$$
(1 / r) \partial\left(r v_{r}\right) / \partial r+\partial v / \partial x=0
$$

Navier-Stokes equations for x-direction

```
\rho[\mp@subsup{v}{r}{}\partialv/\partialr + vx}\partialv/\partialx]=\eta[1/r\partial/\partialr(r\partialv/\partialr) + \partial v v/\partial\mp@subsup{x}{}{2}] - \partialp/\partialx
```


Karman equations

Von Kármán results; $\zeta=2.11 \exp \{-0.884 x \sqrt{\omega d / \eta}\}$

$x \sqrt{\omega d / \eta}=$ dimensionless axial coordinate	$-v_{x}=$ upward velocity toward the disk	$v_{r}=$ radial velocity away from axis	$v_{\theta}=$ angular velocity around the axis
0	0	0	ωr
small	$0.510 x^{2} \sqrt{\omega^{3} d / \eta}$	$0.510 r x \sqrt{\omega^{3} d / \eta}$	$\omega(r-0.616 x)$
1	$0.268 \sqrt{\eta \omega / d}$	$0.182 \omega r$	$0.477 \sqrt{\eta \omega / d}$
large	$\sqrt{\eta \omega / d}[0.884-\zeta]$	$0.443 \omega r \zeta$	$0.443 \omega r \zeta$
∞	$0.884 \sqrt{\eta \omega / d}$	0	0

Dimensionless varible

$$
\mathrm{x}(\omega \rho / \eta)^{0.5}
$$

Hydrodynamic layer

$$
x=(\eta / \omega \rho)^{0.5} \quad(\sim 100 \mu \mathrm{~m})
$$

Flux ~ Current density

Flux density at the electrode surface

$$
j_{i}^{s}=0.62(\rho / \eta) D_{i}^{2 / 3}\left(C_{i}^{s}-C_{i}^{b}\right)(\omega)^{1 / 2}
$$

