化工熱力學 Ch.6 Calculation of the Properties of Pure Fluids

Bing Joe Hwang (bjh@mail.ntust.edu.tw)

1. Describing Thermodynamic Properties

2. EOS (PVT relationships) of Matters

3. The Corresponding State Theorem

4. Calculation of Property Changes

Thermodynamic Properties: What we know

- We have applied balance analysis to solve the energy issue of all kinds of process.
 - System definition.
 - Process description.
 - Mass balance.
 - Energy balance.
 - Entropy balance.
 - Find thermodynamic properties of matters in the process.
 - Solve the energy issue of the process.
- These confirm that U, H, A, G, S are all important thermodynamic properties.
- How can we obtain all these thermodynamic properties of different matters?

1. Describing Thermodynamic Properties

- Need to calculate <u>U</u>, <u>H</u>, <u>S</u>,, which are appeared in energy and entropy balance equations
- The thermodynamic properties are usually expressed in terms of easily measurable variables, f (T, P) or f (T, V).
- Estimate the properties from Tables, Charts, or thermodynamic models (CSP, EOS)

- Thermodynamic state variables: P, T, V, S, U, H, A, G
- For a single-component and one phase system, there are two independent intensive variables and remaining six variables are dependent variables.
- e.g., T, and <u>V</u> are independent variables, thus
- $\underline{U} = f(T, \underline{V}), \underline{H} = f(T, \underline{V}), A = f(T, \underline{V}), \underline{G} = f(T, \underline{V}), \underline{S} = f(T, \underline{V}),$
- P = f (T, V) <= Equation of State</p>

Thermodynamic Properties

- The importance of partial derivative, $\left(\frac{\partial X}{\partial Y}\right)_{J}$
- Tools while using mathematics,

$$\left(\frac{\partial X}{\partial Y}\right)_{X} = 0 \quad \left(\frac{\partial X}{\partial X}\right)_{Z} = 1 \quad \left(\frac{\partial X}{\partial Y}\right)_{Z} = \frac{1}{\left(\frac{\partial Y}{\partial X}\right)_{Z}}$$

- Extensive and Intensive properties: (∂X) $(\partial (NX))$ (∂X)

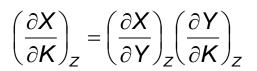
$$\left(\frac{\partial Y}{\partial Y}\right)_{Z,N} = \left(\frac{\partial Y}{\partial Y}\right)_{Z,N} = N\left(\frac{\partial Y}{\partial Y}\right)_{Z,N} = \frac{N}{N}\left(\frac{\partial X}{\partial Y}\right)_{Z,N} = \left(\frac{\partial (NX)}{\partial (NY)}\right)_{Z,N} = \frac{N}{N}\left(\frac{\partial X}{\partial Y}\right)_{Z,N} = \left(\frac{\partial X}{\partial Y}\right)_{Z,N} = \frac{N}{N}\left(\frac{\partial X}{\partial Y}\right)_{Z,$$

$$\left(\frac{\partial U}{\partial T}\right)_{V,N} = N\left(\frac{\partial \underline{U}}{\partial T}\right)_{V} = NC_{V}$$
$$\left(\frac{\partial U}{\partial V}\right)_{T,N} = \left(\frac{\partial \underline{U}}{\partial V}\right)_{T}$$

- Triple products rule:

$$\left(\frac{\partial X}{\partial Y}\right)_{Z}\left(\frac{\partial Z}{\partial X}\right)_{Y}\left(\frac{\partial Y}{\partial Z}\right)_{X} = -1 \quad \Rightarrow \quad \left(\frac{\partial X}{\partial Y}\right)_{Z}\left(\frac{\partial Z}{\partial X}\right)_{Y} = -\left(\frac{\partial Z}{\partial Y}\right)_{X}$$

– Chain rule:



Triple products rule

Differentiation of f(x, y) gives

$$df = \left(\frac{\partial f}{\partial x}\right)_{y} dx + \left(\frac{\partial f}{\partial y}\right)_{x} dy \qquad (1.5)$$

Now since y is a function of x and z, it can be differentiated similarly:

$$dy = \left(\frac{\partial y}{\partial x}\right)_z dx + \left(\frac{\partial y}{\partial z}\right)_x dz$$
(1.6)

Substituting Eq. (1.6) into Eq. (1.5) gives

$$df = \left[\left(\frac{\partial f}{\partial x} \right)_{y} + \left(\frac{\partial f}{\partial y} \right)_{x} \left(\frac{\partial y}{\partial x} \right)_{z} \right] dx + \left(\frac{\partial f}{\partial y} \right)_{x} \left(\frac{\partial y}{\partial z} \right)_{x} dz$$

However, when f is expressed as a function of x and z and differentiated, the result is

$$df = \left(\frac{\partial f}{\partial x}\right)_z dx + \left(\frac{\partial f}{\partial z}\right)_x dz$$

If we now equate the coefficients of dz in these two equations, we find

$$\left(\frac{\partial f}{\partial z}\right)_{x} = \left(\frac{\partial f}{\partial y}\right)_{x} \left(\frac{\partial y}{\partial z}\right)_{x} \qquad \qquad \left(\frac{\partial f}{\partial x}\right)_{z} = \left(\frac{\partial f}{\partial x}\right)_{y} + \left(\frac{\partial f}{\partial y}\right)_{x} \left(\frac{\partial y}{\partial x}\right)_{z}$$

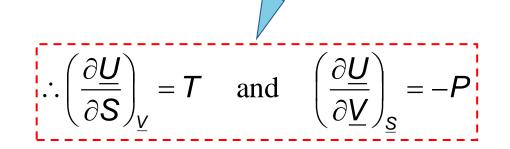
Thermodynamic Properties

• By correlations,

- an open system during a reversible process without W_S $dU = TdS - PdV + \hat{G}dM$ or $d\underline{U} = Td\underline{S} - Pd\underline{V} + \underline{G}dN$ (4.2-13a)
- a closed system during a reversible process without W_S , dU = TdS - PdV or $d\underline{U} = Td\underline{S} - Pd\underline{V}$

 $d\underline{\underline{U}} = \left(\frac{\partial \underline{\underline{U}}}{\partial S}\right)_{V} d\underline{S} + \left(\frac{\partial \underline{\underline{U}}}{\partial V}\right)_{S} d\underline{V}$

- While \underline{U} is a state properties and $\underline{U} = \underline{U}(\underline{S}, \underline{V})$



Evaluation of Thermodynamic Partial Derivatives

Special definitions for some partial derivatives:

$$\begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{\underline{V}} \equiv C_{V} ; \begin{pmatrix} \frac{\partial H}{\partial T} \end{pmatrix}_{P} \equiv C_{P} \\ \frac{1}{\underline{V}} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P} = \alpha \text{ (coeff. of thermal expansion)} \\ \frac{-1}{\underline{V}} \begin{pmatrix} \frac{\partial V}{\partial P} \end{pmatrix}_{T} = \kappa_{T} \text{ (isothermal compressibility)}$$

For an open system (extensive properties)

$$dU = T dS - P dV + \underline{G} dN \implies dS = \frac{dU}{T} + \frac{P dV}{T} - \frac{\underline{G} dN}{T}$$

For a closed system (intensive properties)

$$d\underline{U} = T d\underline{S} - P d\underline{V} \implies d\underline{S} = \frac{d\underline{U}}{T} + \frac{Pd\underline{V}}{T}$$

$$\underline{H} = \underline{U} + P\underline{V} \implies d\underline{H} = d\underline{U} + P d\underline{V} + \underline{V} dP \implies$$

$$d\underline{H} = T d\underline{S} + \underline{V} dP & \& dH = T dS + V dP + \underline{G} dN$$

$$\underline{A} = \underline{U} - T\underline{S} \implies d\underline{A} = d\underline{U} - T d\underline{S} - \underline{S} dT \implies$$

$$d\underline{A} = -P dV - \underline{S} dT & \& dA = -P dV - S dT + \underline{G} dN$$

$$\underline{G} = \underline{H} - T\underline{S} \implies d\underline{G} = d\underline{H} - T d\underline{S} - \underline{S} dT \implies$$

$$dG = V dP - S dT & \& dG = V dP - S dT + \underline{G} dN$$

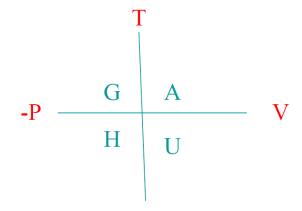
- $\diamond \quad dU = T \, dS P \, dV + G \, dN$
- ✤ U = f (S, V, N)

$$\Rightarrow dU = \left(\frac{\partial U}{\partial S}\right)_{V,N} dS + \left(\frac{\partial U}{\partial V}\right)_{S,N} dV + \left(\frac{\partial U}{\partial N}\right)_{V,S} dN$$

$$\therefore$$
$$\left(\frac{\partial U}{\partial S}\right)_{V,N} = \left(\frac{\partial U}{\partial S}\right)_{\underline{V}} = T$$
$$\left(\frac{\partial U}{\partial V}\right)_{S,N} = \left(\frac{\partial U}{\partial \underline{V}}\right)_{\underline{S}} = -P$$
$$\left(\frac{\partial U}{\partial N}\right)_{V,S} = \underline{G}$$

Maxwell's relations (From the commutative property of the mixed second derivatives)

$$\frac{\partial}{\partial \underline{V}} \Big|_{\underline{S}} \left(\frac{\partial \underline{U}}{\partial \underline{S}} \right)_{\underline{V}} = \left(\frac{\partial T}{\partial \underline{V}} \right)_{\underline{S}} = \frac{\partial}{\partial \underline{S}} \Big|_{\underline{V}} \left(\frac{\partial \underline{U}}{\partial \underline{V}} \right)_{\underline{S}} = -\left(\frac{\partial P}{\partial \underline{S}} \right)_{\underline{V}}$$
$$\therefore \left(\frac{\partial T}{\partial \underline{V}} \right)_{\underline{S}} = -\left(\frac{\partial P}{\partial \underline{S}} \right)_{\underline{V}} \quad \left(\frac{\partial T}{\partial P} \right)_{\underline{S}} = \left(\frac{\partial \underline{V}}{\partial \underline{S}} \right)_{\underline{P}}$$
$$\left(\frac{\partial P}{\partial T} \right)_{\underline{V}} = \left(\frac{\partial \underline{S}}{\partial \underline{V}} \right)_{\underline{T}} \quad \left(\frac{\partial \underline{V}}{\partial T} \right)_{\underline{P}} = -\left(\frac{\partial \underline{S}}{\partial \underline{P}} \right)_{\underline{T}}$$



Entropy change

Entropy Change

★ <u>S</u> = f (<u>U</u>, <u>V</u>) => <u>S</u> = f (T, <u>V</u>) or f (T, P)
 ★ Let <u>S</u> = f (T, <u>V</u>)

$$d\underline{S} = \left(\frac{\partial \underline{S}}{\partial T}\right)_{\underline{V}} dT + \left(\frac{\partial \underline{S}}{\partial \underline{V}}\right)_{T} d\underline{V}$$

$$\left(\frac{\partial \underline{S}}{\partial T}\right)_{\underline{V}} = \left(\frac{\partial \underline{S}}{\partial \underline{U}}\right)_{\underline{V}} \left(\frac{\partial \underline{U}}{\partial T}\right)_{\underline{V}} = \left[\left(\frac{\partial \underline{U}}{\partial \underline{S}}\right)_{\underline{V}}\right]^{-1} \left(\frac{\partial \underline{U}}{\partial T}\right)_{\underline{V}} = \frac{C_{\underline{V}}}{T}$$

$$\left(\frac{\partial \underline{S}}{\partial \underline{V}}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{\underline{V}} from Maxwell's relation$$

$$\Rightarrow d\underline{S} = \frac{C_{\underline{V}}}{T} dT + \left(\frac{\partial P}{\partial T}\right)_{\underline{V}} d\underline{V}$$
Similarly,
$$\Rightarrow d\underline{S} = \frac{C_{\underline{P}}}{T} dT - \left(\frac{\partial \underline{V}}{\partial T}\right)_{\underline{P}} dP$$

Internal Energy Change & Enthalpy Change

Internal Energy Change & Enthalpy Change

$$d\underline{U} = T \, d\underline{S} - P \, d\underline{V} = T \left[\frac{C_{V}}{T} \, dT + \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} d\underline{V} \right] - P \, d\underline{V}$$

$$= C_{V} dT + \left[T \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} - P \right] d\underline{V} = \left(\frac{\partial U}{\partial T} \right)_{\underline{V}} dT + \left(\frac{\partial U}{\partial \underline{V}} \right)_{T} d\underline{V}$$
For an ideal gas $\Rightarrow \left(\frac{\partial U}{\partial \underline{V}} \right)_{T} = T \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} - P = T \frac{R}{\underline{V}} - P = P - P = 0$

$$d\underline{H} = C_{P} dT + \left[\underline{V} - T \left(\frac{\partial V}{\partial T} \right)_{P} \right] dP = \left(\frac{\partial H}{\partial T} \right)_{P} dT + \left(\frac{\partial H}{\partial P} \right)_{T} dP$$
For an ideal gas $\Rightarrow \left(\frac{\partial H}{\partial P} \right)_{T} = \underline{V} - T \left(\frac{\partial V}{\partial T} \right)_{P} = \underline{V} - T \frac{R}{\underline{P}} = \underline{V} - \underline{V} = 0$

Express thermodynamic properties in terms of

$$T, P, \underline{V}, C_P \text{ or } C_V \And \left(\frac{\partial}{\partial P}\right), \left(\frac{\partial}{\partial \underline{V}}\right), \left(\frac{\partial}{\partial T}\right), \dots$$

 If EOS, C_P or C_V are given, thermodynamic properties can be calculated.

Useful definitions & thermodynamic identities

$$\frac{\partial}{\partial \underline{V}} \Big|_{T} \left(\frac{\partial \underline{U}}{\partial T} \right)_{\underline{V}} = \left(\frac{\partial C_{\underline{V}}}{\partial \underline{V}} \right)_{T} = \frac{\partial}{\partial T} \Big|_{\underline{V}} \left(\frac{\partial \underline{U}}{\partial \underline{V}} \right)_{T} = \left\{ \frac{\partial}{\partial T} \Big[T \Big(\frac{\partial P}{\partial T} \Big)_{\underline{V}} - P \Big] \right\}_{\underline{V}} = T \Big(\frac{\partial^{2} P}{\partial T^{2}} \Big)_{\underline{V}}$$

$$\Rightarrow \left[\frac{\partial C_{\underline{V}}}{\partial \underline{V}} \right]_{T} = T \Big(\frac{\partial^{2} P}{\partial T^{2}} \Big)_{\underline{V}}$$
Similarly,
$$\Rightarrow \left[\frac{\partial C_{\underline{P}}}{\partial P} \Big]_{T} = -T \Big(\frac{\partial^{2} \underline{V}}{\partial T^{2}} \Big)_{\underline{P}} \right]$$

$$\Rightarrow C_{\underline{P}} = C_{\underline{V}} + \frac{TV\alpha^{2}}{\kappa_{T}}$$

Table 6.2-1

Useful definitions & thermodynamic identities

Summary: Thermodynamic Properties

Table 6.2-1 Some Useful Definitions and Thermodynamic Identities

Definitions Constant-volume heat capacity = $C_V = \left(\frac{\partial \underline{U}}{\partial T}\right)_{\underline{V}} = T\left(\frac{\partial \underline{S}}{\partial T}\right)_{\underline{V}}$ Constant-pressure heat capacity = $C_P = \left(\frac{\partial \underline{H}}{\partial T}\right)_P = T\left(\frac{\partial \underline{S}}{\partial T}\right)_P$ Isothermal compressibility = $\kappa_T = -\frac{1}{\underline{V}}\left(\frac{\partial \underline{V}}{\partial P}\right)_T$ Coefficient of thermal expansion = $\alpha = \frac{1}{\underline{V}}\left(\frac{\partial \underline{V}}{\partial T}\right)_P$ Joule-Thomson coefficient = $\mu = -\frac{\left[\underline{V} - T\left(\frac{\partial \underline{V}}{\partial T}\right)_P\right]}{C}$

Maxwell relations

Ex.

$$\begin{pmatrix} \frac{\partial T}{\partial \underline{V}} \end{pmatrix}_{\underline{S}} = -\begin{pmatrix} \frac{\partial P}{\partial \underline{S}} \end{pmatrix}_{\underline{Y}} \qquad \begin{pmatrix} \frac{\partial T}{\partial P} \end{pmatrix}_{\underline{S}} = \begin{pmatrix} \frac{\partial \underline{V}}{\partial \underline{S}} \end{pmatrix}_{P} \\ \begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{\underline{Y}} = \begin{pmatrix} \frac{\partial \underline{S}}{\partial \underline{Y}} \end{pmatrix}_{T} \qquad \begin{pmatrix} \frac{\partial \underline{V}}{\partial T} \end{pmatrix}_{P} = -\begin{pmatrix} \frac{\partial \underline{S}}{\partial P} \end{pmatrix}_{T}$$

Thermodynamic identities

$$\begin{pmatrix} \frac{\partial \underline{H}}{\partial \underline{S}} \end{pmatrix}_{p} = \begin{pmatrix} \frac{\partial \underline{U}}{\partial \underline{S}} \end{pmatrix}_{\underline{Y}} = T \qquad \begin{pmatrix} \frac{\partial \underline{G}}{\partial P} \end{pmatrix}_{T} = \begin{pmatrix} \frac{\partial \underline{H}}{\partial P} \end{pmatrix}_{\underline{S}} = \underline{Y} \\ \begin{pmatrix} \frac{\partial \underline{U}}{\partial \underline{V}} \end{pmatrix}_{\underline{S}} = \begin{pmatrix} \frac{\partial \underline{A}}{\partial \underline{V}} \end{pmatrix}_{T} = -P \qquad \begin{pmatrix} \frac{\partial \underline{A}}{\partial T} \end{pmatrix}_{\underline{Y}} = \begin{pmatrix} \frac{\partial \underline{G}}{\partial T} \end{pmatrix}_{p} = -\underline{S}$$

Thermodynamic functions

$$d\underline{U} = T \, d\underline{S} - P \, d\underline{Y} = C_{V} \, dT + \left[T \left(\frac{\partial P}{\partial T} \right)_{\underline{Y}} - P \right] d\underline{Y}$$
$$d\underline{H} = T \, d\underline{S} + \underline{Y} \, dP = C_{P} \, dT + \left[\underline{Y} - T \left(\frac{\partial Y}{\partial T} \right)_{P} \right] dP$$
$$d\underline{A} = -P \, d\underline{Y} - \underline{S} \, dT$$
$$d\underline{G} = \underline{Y} \, dP - \underline{S} \, dT$$

Miscellaneous

$$\begin{pmatrix} \frac{\partial \underline{U}}{\partial \underline{Y}} \end{pmatrix}_{T} = T \begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{\underline{Y}} - P = \frac{T\alpha}{\kappa_{T}} - P & \frac{\partial}{\partial T} \Big|_{p} \begin{pmatrix} \underline{G}{T} \end{pmatrix} = -\frac{\underline{H}}{T^{2}} & \frac{\partial}{\partial \frac{1}{T}} \Big|_{p} \begin{pmatrix} \underline{\Theta}{T} \end{pmatrix} = \underline{H} \\ \begin{pmatrix} \frac{\partial \underline{H}}{\partial P} \end{pmatrix}_{T} = \underline{Y} - T \begin{pmatrix} \frac{\partial \underline{V}}{\partial T} \end{pmatrix}_{p} = \underline{Y}(1 - T\alpha) & \frac{\partial}{\partial T} \Big|_{\underline{Y}} \begin{pmatrix} \underline{A}{T} \end{pmatrix} = -\frac{\underline{U}}{T^{2}} & \frac{\partial}{\partial \frac{1}{T}} \Big|_{\underline{Y}} \begin{pmatrix} \underline{A}{T} \end{pmatrix} = \underline{U} \\ \frac{\underline{G}}{\partial \frac{1}{N}} \Big|_{T,P} = \begin{pmatrix} \frac{\partial A}{\partial N} \end{pmatrix}_{T,V} = \begin{pmatrix} \frac{\partial H}{\partial N} \end{pmatrix}_{P,S} = \begin{pmatrix} \frac{\partial U}{\partial N} \end{pmatrix}_{S,V} = -T \begin{pmatrix} \frac{\partial S}{\partial N} \end{pmatrix}_{U,V}$$

Ex. 6.2.3

Develop expressions of (i) thermal expansion coefficient, (ii) isothermal compressibility, (iii) Joule-Thompson coefficient, and (iv) CP - CV. Apply (a) ideal gas and (b) van der Waal gas into these expressions.

 $\left(P+\frac{\alpha}{V^2}\right)\left(V-b\right)=RT$ L>> VOW EOS $T = \frac{PV}{R} - \frac{Pb}{R} + \frac{a}{VR} - \frac{ab}{RV^2}$ $= \frac{1}{\frac{y}{2}} \frac{\frac{1}{\frac{y}{2}}}{\frac{y}{2}} \left[\frac{p y}{p} - \frac{p b}{p} + \frac{a}{y p} - \frac{a b}{p y^2} \right]_{p}$ $= \left(\underbrace{\frac{PY}{R}}_{R} - \frac{q}{YR} + \frac{2ab}{RY^{2}}\right)^{-1}$ vdw $\frac{P\underline{Y}}{R} = \frac{T\underline{Y}}{(\underline{Y}-b)} - \frac{a}{\underline{k}\underline{Y}} = \left[\frac{T\underline{Y}}{\underline{Y}-b} - \frac{2a}{\underline{k}\underline{Y}^{2}}(\underline{Y}-b)\right]^{-1} \approx$ (2) $K_{T} = -\frac{1}{\Gamma} \left(\frac{\partial F}{\partial Y}\right)_{T} = -\frac{1}{\Gamma} \frac{\left(\frac{\partial F}{\partial Y}\right)_{T}}{\left(\frac{\partial F}{\partial Y}\right)_{T}}$ $V_{d}W EOS: P = \frac{RT}{V-b} - \frac{a}{Y^{2}}$ $\left(\frac{\partial P}{\partial \underline{Y}}\right)_{\overline{j}} = \frac{\partial}{\partial \underline{Y}} \left(\frac{\underline{RT}}{\underline{Y}-b} - \frac{a}{\underline{Y}^{2}}\right) \Big|_{T}$ $=\frac{-RT}{(V-b)^{2}}+\frac{2a}{V^{3}}$ $\overset{\circ}{\sim} K_{T} = \left[\frac{RT \underline{V}}{(V-b)^{2}} - \frac{2q}{\underline{V}^{2}} \right]^{-1}$

$$\begin{array}{c} (3) \\ \hline (3) \hline \hline (3) \\ \hline (3) \\ \hline (3) \hline \hline (3) \\ \hline (3) \hline \hline (3) \\ \hline (3) \hline \hline (3) \hline$$

VUW EOS

$$\left(\frac{\partial T}{\partial \underline{V}}\right)_{p} = \frac{P}{R} - \frac{a}{R\underline{V}^{2}} + \frac{ab}{R\underline{V}^{3}}$$
$$\frac{T}{\underline{V} - b} - \frac{a}{R\underline{V}^{2}}$$

$$63 \int e^{\nu dW} = -\frac{\nu}{C_p} \left[\left(-\frac{1}{\frac{\nu}{\nu-b} - \frac{2a}{R_T} \left(\frac{\nu-b}{\nu^2}\right)} \right] \right]$$

$$\stackrel{\text{(f)}}{=} C_{p} - C_{v} = T \left(\frac{\partial P}{\partial T}\right)_{\underline{V}} \left(\frac{\partial \Psi}{\partial T}\right)_{p}$$
$$= T \left(\frac{\partial P}{\partial T}\right)_{\underline{V}} \left(\frac{\partial \Psi}{\partial \Psi}\right)_{p}$$

VdW EOS

$$\left(\frac{\partial P}{\partial T}\right)_{\underline{y}} = \frac{\partial}{\partial T} \left[\frac{RT}{\underline{y}-b} - \frac{\alpha}{\underline{y}^2} \right] \Big|_{\underline{y}} = \frac{R}{\underline{y}-b}$$

$$\left(\frac{\partial T}{\partial \underline{y}}\right)_{\underline{p}} = \frac{T}{\underline{y}-b} - \frac{2\alpha}{R\underline{y}^2} + \frac{2\alpha b}{R\underline{y}^3}$$

$$\hat{\mathcal{O}}(C_p - C_V)^{VdW} = \frac{R}{\left[-\frac{2\alpha}{RT} \frac{(V-b)^2}{V^3}\right]}$$

Evaluation of changes in thermodynamic properties of real substance accompanying a change of state

- Evaluate the changes of U, H. S, ...for real fluids from Charts or Tables.
- Calculate changes of U, H, S,....for real fluids from equations with parameters that have been fitted to experimental data.
- Volumetric Equations of State (P-V-T)
- Cubic equations of state (EOS)
 - Seneral form

$$\frac{V^{3} + a_{1} V}{V^{2} + a_{2} V} + a_{3} = 0$$
 or

$$Z^{3} + \alpha Z^{2} + \beta Z + \gamma = 0$$
 where $Z = \frac{PV}{RT}$

General form of some simple cubic EOS (Table 6.4-2)

$$P = \frac{RT}{\underline{V} - b} - \frac{(\underline{V} - \eta)\theta}{(\underline{V} - b)(\underline{V}^2 + \delta \underline{V} + \varepsilon)}$$

Cubic equation of state (EOS)

$$P = \frac{RT}{\underline{V} - b} - \frac{a}{\underline{V}^2}$$

where a and b are parameters of the equation which are substance-specified constants. They can be estimated from critical point data (Sec. 6.6)

$$\left(\frac{\partial P}{\partial \underline{V}} \right)_T \Big|_{at T_C, P_C, V_C} = 0 \quad \& \quad \left(\frac{\partial^2 P}{\partial \underline{V}^2} \right)_T \Big|_{at T_C, P_C, V_C} = 0$$

$$\Rightarrow a = f \left(\text{critical point data} \right) \& b = f \left(\text{critical point data} \right)$$

- Redlich-Kwong (RK) EOS (1949)
- Soave (SRK) EOS (1972)

$$P = \frac{RT}{\underline{V} - b} - \frac{a}{T^{1/2}\underline{V}(\underline{V} + b)}$$

$$P = \frac{RT}{a(T)} = \frac{a}{a(T)}$$

$$P = \frac{M}{\underline{V} - b} - \frac{u(\underline{V})}{\underline{V}(\underline{V} + b)}$$

- * Peng-Robinson (PR) EOS (1976) $P = \frac{RT}{V-b} \frac{a}{V(V+b)+b(V-b)}$
- Cubic EOS are generally applicable to both vapor and liquid regions for hydrocarbons, of the vapor region only for many other pure fluids.

Cubic Equation of State

• The general form of Cubic EOS (in the P-explicit format), $P = \frac{RT}{\underline{V} - b} - \frac{(\underline{V} - \eta)\theta}{(\underline{V} - b)(\underline{V}^2 + \delta \underline{V} + \varepsilon)}$ Table 6.4-2 Parameters for Cubic Equations of State $P = \frac{RT}{\underline{V} - b} - \Delta$

Author	Year	θ	η	δ	Е	Δ
van der Waals	1873	а	b	0	0	$\frac{a}{V^2}$
Clausius	1880	a/T	b	2c	c^2	$\frac{a/T}{(V+c)^2}$
Berthelot	1899	a/T	b	0	0	$\frac{\overline{a/T}}{\underline{V}^2}$
Redlich-Kwong	1949	a/\sqrt{T}	b	b	0	$\frac{a/\sqrt{T}}{V(V+b)}$
Soave	1972	$\theta_S(T)$	b	b	0	$\frac{\theta_s(T)}{\underline{V}(\underline{V}+b)}$
Lee-Erbar-Edmister	1973	$\theta_L(T)$	$\eta(T)$	b	0	$\frac{\theta_L(T)[V - \eta(T)]}{(V - b)(V + b)}$
Peng-Robinson	1976	$\theta_{PR}(T)$	b	2b	$-b^{2}$	$\frac{\theta_{PR}(T)}{\underline{V}(\underline{V}+b) + b(\underline{V}-b)}$
Patel-Teja	1981	$\theta_{PT}(T)$	b	b + c	– <i>cb</i>	$\frac{\theta_{PT}(T)}{V(V+b) + c(V-b)}$

Note: If $\eta = b$, Eq. 6.4-3 reduces to

$$P = \frac{RT}{\underline{V} - b} - \frac{\theta}{\underline{V}^2 + \delta \underline{V} + \varepsilon}$$

Virial equation

Virial equation (Onnes, 1901)

$$\frac{\underline{PV}}{RT} = 1 + \frac{\underline{B(T)}}{\underline{V}} + \frac{\underline{C(T)}}{\underline{V}^2} + \dots$$

where *B* and *C* are the second virial and the third virial coefficients, respectively.

- virial equation can be derived from statistical mechanics.
- viral coefficients can be evaluated if the potential function between molecules is given.
- virial equation with sufficient number of coefficients is good for vapor-phase prediction, but not for liquid phase.
 - Two-term virial equation

$$\frac{\underline{PV}}{\underline{RT}} = 1 + \frac{\underline{B(T)}}{\underline{V}}$$

useful only *P* < 10 bar (low density region)

Virial-type equations of state

BWR equation (Benedict, Webb & Rubin, 1940)

$$\frac{P\underline{V}}{RT} = 1 + \left(B - \frac{A}{RT} - \frac{C}{RT^3}\right)\frac{1}{\underline{V}} + \left(b - \frac{a}{RT}\right)\frac{1}{\underline{V}^2} + \frac{a\alpha}{RT\underline{V}^5} + \frac{\beta}{RT^3\underline{V}}\left(1 + \frac{\gamma}{\underline{V}^2}\right)exp\left(\frac{-\gamma}{\underline{V}^2}\right)$$

eight parameters: *a*, *b*, *A*, *B*, *C*, α , β , and γ are specific to each fluid, which were determined from experimental data: vapor pressures and/or density data

Bender equation (1970)- 20 parameters

$$P = \frac{T}{\underline{V}} \left[R + \frac{B}{\underline{V}} + \frac{C}{\underline{V}^2} + \frac{D}{\underline{V}^3} + \frac{E}{\underline{V}^4} + \frac{F}{\underline{V}^5} + \left(G + \frac{H}{\underline{V}^2} \right) \frac{1}{\underline{V}^2} exp\left(\frac{-a_{20}}{\underline{V}^2} \right) \right]$$

where *B*, *C*, *D*, *E*, *F*, *G* & *H* are functions of *T*.

 Coefficients of these equations known only for light hydrocarbons and a few other substances.

\diamond Evaluation of ΔH , ΔU , and ΔS

$$\Delta \underline{H} = \underline{H}(T_2, P_2) - \underline{H}(T_1, P_2) = \int_{T_1, P_1}^{T_2, P_2} d\underline{H}$$

State function $\Delta \underline{H}_{12} = \Delta \underline{H}_a + \Delta \underline{H}_b + \Delta \underline{H}_c$

$$\Delta \underline{H} = \int_{P_1, T_1}^{P=0, T_1} \left[\underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP + \int_{T_1, P=0}^{T_2, P=0} C_P^* dT + \int_{P=0, T_2}^{P_2, T_2} \left[\underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP$$
a

2

С

Т

b

Ρ

-

Similarly,

20 A A A

3.....

i....

$$\Delta \underline{S} = -\int_{P_1, T_1}^{P=0, T_1} \left(\frac{\partial \underline{V}}{\partial T} \right)_P dP + \int_{T_1, P=0}^{T_2, P=0} \frac{C_P^*}{T} dT - \int_{P=0, T_2}^{P_2, T_2} \left(\frac{\partial \underline{V}}{\partial T} \right)_P dP$$
$$\Delta \underline{S} = \int_{\underline{V}_1, T_1}^{\underline{V}=\infty, T_1} \left(\frac{\partial P}{\partial T} \right)_V d\underline{V} + \int_{T_1, \underline{V}=\infty}^{T_2, \underline{V}=\infty} \frac{C_V^*}{T} dT + \int_{\underline{V}=\infty, T_2}^{\underline{V}_2, T_2} \left(\frac{\partial P}{\partial T} \right)_V d\underline{V}$$

$$\Delta \underline{U} = \int_{\underline{V}_1, T_1}^{\underline{V} = \infty, T_1} \left[T \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} - P \right] d\underline{V} + \int_{T_1, \underline{V} = \infty}^{T_2, \underline{V} = \infty} C_{\underline{V}}^* dT + \int_{\underline{V} = \infty, T_2}^{\underline{V}_2, T_2} \left[T \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} - P \right] d\underline{V}$$

Given C_P*, C_V* data and volumetric EOS, it is possible to calculate ΔH , ΔU , ΔS for any two states of fluids

Ideal gas: change of state

$$d\underline{H} = C_P dT + \left[\underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP$$

For an ideal gas $\Rightarrow \left(\frac{\partial \underline{H}}{\partial P} \right)_T = \underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_P = \underline{V} - T \frac{R}{P} = \underline{V} - \underline{V} = 0$

$$\underline{H}^{IG} (T_2, P_2) - \underline{H}^{IG} (T_1, P_1) = \int_{T_1, P=0}^{T_2, P=0} C_P^* dT$$

$$d\underline{S} = \frac{C_{P}}{T} dT - \left(\frac{\partial V}{\partial T}\right)_{P} dP$$

For ideal $gas \Rightarrow d\underline{S} = \frac{C_{P}^{*}}{T} dT - \left(\frac{R}{P}\right) dP$
 $\underline{S}^{IG}(T_{2}, P_{2}) - \underline{S}^{IG}(T_{1}, P_{1}) = -\int_{T_{1}, P_{1}}^{T_{1}, P=0} \left(\frac{R}{P}\right) dP + \int_{T_{1}}^{T_{2}} \frac{C_{P}^{*}}{T} dT - \int_{T_{2}, P=0}^{T_{2}, P_{2}} \left(\frac{R}{P}\right) dP = \int_{T_{1}}^{T_{2}} \frac{C_{P}^{*}}{T} dT - R \ln \frac{P_{2}}{P_{1}}$
 $\underline{S}^{IG}(T_{2}, \underline{V}_{2}) - \underline{S}^{IG}(T_{1}, \underline{V}_{1}) = \int_{T_{1}, V_{1}}^{T_{1}, V=\infty} \left(\frac{R}{V}\right) dV + \int_{T_{1}}^{T_{2}} \frac{C_{V}^{*}}{T} dT + \int_{T_{2}, V=\infty}^{T_{2}, V_{2}} \left(\frac{R}{V}\right) d\underline{V} = \int_{T_{1}}^{T_{2}} \frac{C_{V}^{*}}{T} dT + R \ln \frac{V_{2}}{V_{1}}$

Departure functions

$$\Delta \underline{H} = \underline{H}(T_2, P_2) - \underline{H}(T_1, P_1) = \int_{P_1, T_1}^{P_{=0, T_1}} \left[\underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP + \underline{H}^{IG}(T_2, P_2) - \underline{H}^{IG}(T_1, P_1) + \int_{P_{=0, T_2}}^{P_2, T_2} \left[\underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP \\ = - \left(\underline{H} - \underline{H}^{IG} \right)_{T_1, P_1} + \underline{H}^{IG}(T_2, P_2) - \underline{H}^{IG}(T_1, P_1) + \left(\underline{H} - \underline{H}^{IG} \right)_{T_2, P_2}$$

Similarly,

$$\begin{split} \Delta \underline{S} &= \underline{S}(T_2, P_2) - \underline{S}(T_1, P_1) = -\int_{P_1, T_1}^{P=0, T_1} \left[\left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP + \int_{T_1}^{T_2} \frac{C_P^*}{T} dT - \int_{P=0, T_2}^{P_2, T_2} \left[\left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP \\ &= -\int_{P_1, T_1}^{P=0, T_1} \left[\left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP + \underline{S}^{IG}(T_2, P_2) - \underline{S}^{IG}(T_1, P_1) + \int_{P_1, T_1}^{P=0, T_1} \left[\frac{R}{P} \right] dP + \int_{P=0, T_2}^{P_2, T_2} \left[\frac{R}{P} \right] dP - \int_{P=0, T_2}^{P_2, T_2} \left[\left(\frac{\partial \underline{V}}{\partial T} \right)_P \right] dP \\ &= -\int_{P_1, T_1}^{P=0, T_1} \left[\left(\frac{\partial \underline{V}}{\partial T} \right)_P - \frac{R}{P} \right] dP + \underline{S}^{IG}(T_2, P_2) - \underline{S}^{IG}(T_1, P_1) - \int_{P=0, T_2}^{P_2, T_2} \left[\left(\frac{\partial \underline{V}}{\partial T} \right)_P - \frac{R}{P} \right] dP \\ &= -\left(\underline{S} - \underline{S}^{IG} \right)_{T_1, P_1} + \underline{S}^{IG}(T_2, P_2) - \underline{S}^{IG}(T_1, P_1) + \left(\underline{S} - \underline{S}^{IG} \right)_{T_2, P_2} \end{split}$$

$$\Delta \underline{S} = \underline{S}(T_2, \underline{V}_2) - \underline{S}(T_1, \underline{V}_1) = \int_{\underline{V}_1, T_1}^{\underline{V} = \infty, T_1} \left[\left(\frac{\partial P}{\partial T} \right)_{\underline{V}} - \frac{R}{\underline{V}} \right] d\underline{V} + \underline{S}^{IG}(T_2, \underline{V}_2) - \underline{S}^{IG}(T_1, \underline{V}_1) + \int_{\underline{V} = \infty, T_2}^{\underline{V}_2, T_2} \left[\left(\frac{\partial P}{\partial T} \right)_{\underline{V}} - \frac{R}{\underline{V}} \right] d\underline{V} \\ &= -\left(\underline{S} - \underline{S}^{IG} \right)_{\overline{T}_1, \underline{V}_1} + \underline{S}^{IG}(T_2, \underline{V}_2) - \underline{S}^{IG}(T_1, \underline{V}_1) + \left(\underline{S} - \underline{S}^{IG} \right)_{T_2, \underline{V}_2} \end{split}$$

Departure H and Departure S

$$\left(\underline{H} - \underline{H}^{IG}\right)_{T,P} = \int_{T,P=0}^{T,P} \left[\underbrace{V} - T \left(\frac{\partial V}{\partial T}\right)_{P} \right] dP$$

$$\left(\underline{S} - \underline{S}^{IG}\right)_{T,P} = -\int_{T,P=0}^{T,P} \left[\left(\frac{\partial V}{\partial T}\right)_{P} \cdot \frac{R}{P} \right] dP$$

$$\left(\underline{S} - \underline{S}^{IG}\right)_{T,\underline{V}} = \int_{T,\underline{V}=\infty}^{T,\underline{V}} \left[\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} \cdot \frac{R}{\underline{V}} \right] dV$$

$$EOS P = f(T, \underline{V})$$

Evaluate departure H & S from EOS

$$\begin{split} Express\left(\frac{\partial V}{\partial T}\right)_{p} & \text{ in terms of } \left(\frac{\partial P}{\partial T}\right)_{v} or\left(\frac{\partial P}{\partial U}\right)_{T} \\ d(P\underline{V}) &= P \, d\underline{V} + \underline{V} \, dP \Rightarrow dP = \frac{1}{\underline{V}} \, d(P\underline{V}) - \frac{P}{\underline{V}} \, d\underline{V} \\ From triple product rule, & \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial P}{\partial U}\right)_{T} \left(\frac{\partial T}{\partial P}\right)_{\underline{V}} = -1 \Rightarrow \left(\frac{\partial V}{\partial T}\right)_{p} dP \Big|_{T} = -\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} \, d\underline{V}|_{T} \\ \therefore \left[\underline{V} - T\left(\frac{\partial V}{\partial T}\right)_{p}\right] dP = \underline{V} dP - T \left[\left(\frac{\partial V}{\partial T}\right)_{p} dP\right] = \underline{V} \left[\frac{1}{\underline{V}} d(P\underline{V}) - \frac{P}{\underline{V}} \, d\underline{V}\right] + T \left[\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} \, d\underline{V}\right] = d(P\underline{V}) + \left[T\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - P\right] d\underline{V} \\ & \left(\underline{H} - \underline{H}^{1c}\right)_{T,P} = \int_{P_{u=RT}}^{P_{u}} d(P\underline{V}) + \int_{\underline{V}=\infty}^{u} \left[T\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - P\right] d\underline{V} = RT(Z-1) + \int_{\underline{U}=\infty}^{u} \left[T\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - P\right] d\underline{V} \\ \\ Similarly, \\ & \frac{R}{P} dP = R \, \frac{d(P\underline{V})}{P\underline{V}} - R \, \frac{dV}{\underline{V}} = R \, d\ln(P\underline{V}) - R \int_{\underline{U}=\infty}^{u} \frac{dV}{\underline{V}} + \int_{\underline{U}=\infty}^{u} \left(\frac{\partial P}{\partial T}\right)_{\underline{V}} \, d\underline{V} \\ & \left(\underline{S} - \underline{S}^{IG}\right)_{T,P} = R \ln Z \, \frac{1}{\sqrt{v}} \left\{\int_{\underline{V}=\infty}^{P} \left[\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - \frac{R}{\underline{V}}\right]\right\} d\underline{V} \end{split}$$

Calculate departure H & S from PR EOS

$$Peng - Robinson EOS: P = \frac{RT}{\underline{V} - b} - \frac{a(T)}{\underline{V}(\underline{V} + b) + b(\underline{V} - b)}$$

$$(\underline{H} - \underline{H}^{IG})_{T,P} = RT(Z - 1) + \int_{\underline{V} = \infty}^{\underline{V}} \left[T\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - P \right] d\underline{V} = \left[RT(Z - 1) + \frac{T\left(\frac{da}{dT}\right) - a}{2\sqrt{2b}} ln \left[\frac{Z + (1 + \sqrt{2})B}{Z + (1 - \sqrt{2})B} \right] \right]$$

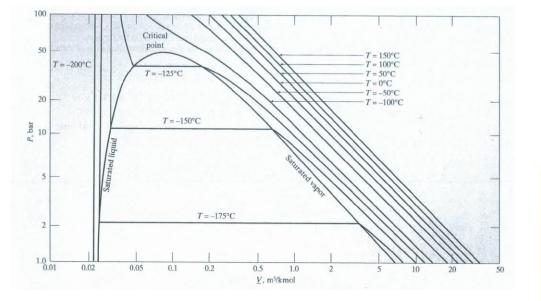
$$(\underline{S} - \underline{S}^{IG})_{T,P} = Rln Z + \left\{ \int_{\underline{V} = \infty}^{\underline{V}} \left[\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - \frac{R}{\underline{V}} \right] \right\} d\underline{V} = Rln(Z - B) + \frac{\left(\frac{da}{dT}\right)}{2\sqrt{2b}} ln \left[\frac{Z + (1 + \sqrt{2})B}{Z + (1 - \sqrt{2})B} \right]$$
where $Z = P\underline{V}/(RT) \& B = Pb/(RT)$

$$Eq. (6.4-30)$$

Illustration 6.4.1: Construction of Thermodynamic Properties Chats

$$O_{2} , -100^{\circ}c \sim 150^{\circ}c , 1 \sim 100 \text{ bar}$$
(1) Calculate z, Y, H, S = $f(T, P)$
(2) $P - Y$ chart
(3) $P - H$ chart
(4) $T - S$ chart
Assumptions: * O_{2} follows PR EOS
* $C_{p}^{*}(\frac{T}{mol \kappa}) = 25.46 + 1.519 \times 10^{-2}T - 0.7151 \times 10^{-9}T^{-3}$
Reference states:
 $H^{r4}(-25^{\circ}c, -16ar) = 0$
S $r^{r4}(-25^{\circ}c, -16ar) = 0$
PR EOS
 $P = \frac{RT}{Y-b} - \frac{a(T)}{Y(Y+b) + b(Y-b)}$
 $a(T) = 0.45724 - \frac{R^{2}Tc^{2}}{Pc} a(T) = a_{c} a(T)$
 $b = 0.0778 - \frac{RTc}{Pc}$
 $a(T) = \begin{cases} 1+0.4069[1-]TTc] \end{cases}^{2}$
 $O_{2}: Tc = 154:6K , P_{c} = 5.046 Mfa$

(50)> (1) * Find Z and Y at given T 2P In a single phase region (e.g. T>Tc) Procedure: O given Te, Pe -> b and ac ∋ given T → K(T) then a(T) ③ given p → solve $P = \frac{RT}{\underline{V}-\underline{b}} - \frac{a(\tau)}{\underline{v}(\underline{V}+\underline{b})+\underline{b}(\underline{V}-\underline{b})}$ $\frac{\Psi}{V} + hen Z = \frac{P\Psi}{RT}$ 01 Solve $Z^{3}+(B-1)Z^{2}+(A-3B^{2}-2B)Z$ where $B = \frac{bP}{RT}$ $A = \frac{aP}{(RT)^{2}}$ $A = \frac{aP}{(RT)^{2}}$ $Cubic = \frac{4}{2}$ $A = \frac{2RT}{P}$ $Cubic = \frac{2RT}{P}$ $Z = \frac{PV}{kT}$ Change T and P → X and Z (Table 6.4-4) (2) p vs. V chart (Fig. 6.4-3) lup vs. lu V # For ideal gases, $P = \frac{RT}{V}$ or \uparrow hup=hu(RT)-huy a straight line



Pressure-volume diagram for oxygen calculated using the Peng-Robinson equation of state.

(3) Enthalpy

$$H(T, p) - H^{T4}(2t^{\circ}c, |kar) = H(T, p)$$

$$= [H(T, p) - H^{T4}(2t^{\circ}c, |kar)] + [H^{T4}(T, p) - H^{T4}(2t^{\circ}c, |kar)]$$

$$= (H - H^{T4})_{T, p} + \int_{T=298, 15}^{T} C_{p}^{*} dT$$

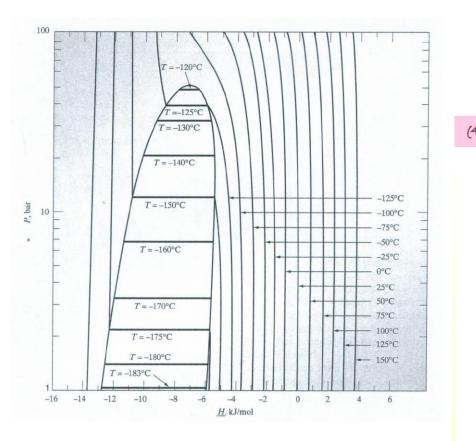
$$= (H - H^{T4})_{T, p} + a^{5.46}(T - 298, 1t) + \frac{1.519}{2}$$

$$= (H - H^{T4})_{T, p} + a^{5.46}(T - 298, 1t) + \frac{1.519}{2}$$

$$= (T^{2} - 298, 1t^{2}) - \frac{0.7/(11\times10^{-5})}{3}(T^{2} - 298, 1t^{2})$$

$$+ \frac{1.311\times10^{-9}}{4}(T^{4} - 298, 1t^{8}) \sim (4\pi)$$

Algorithm:
() given Tc, Pc
$$\rightarrow$$
 b, ac
() given T $\rightarrow \alpha$ (T) then α (T)
() given P \rightarrow solve PR tos to find
 $Y, Z, B = \frac{Pb}{RT}$
() Calc. $(H - H^{24})_{T,P}$ from Eq. (6.4-29)
() Calc. $H(T,P)$ from Eq. (*a)
() $H = f(T,P) \rightarrow Table 6.4-4$
() $P - H$ diagram $\rightarrow Fig. 6.4-4$



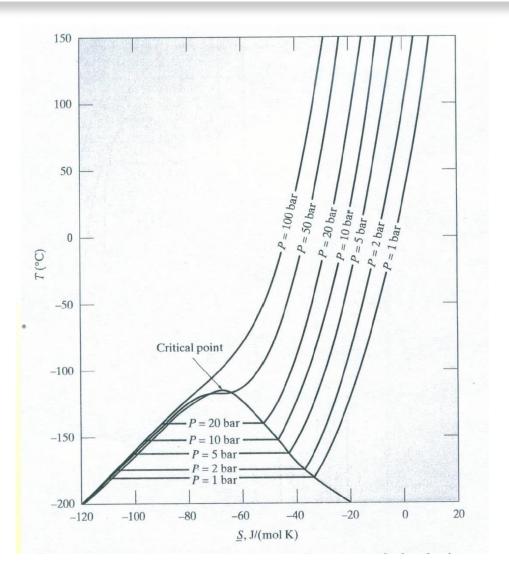
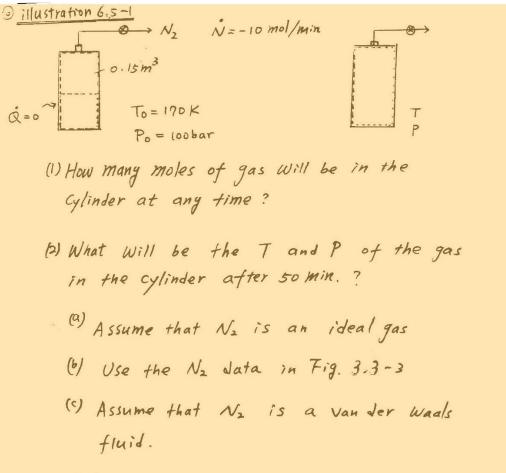


Illustration 6.5-1



Data:

$$Cp^{*}(J/molk) = 21.2 + 4.2 \times 10^{-3} T(k)$$

(sol)
(1) (alculation of N(t))
System: the gas in the cylinder (open system)
Mass balance:
$$\frac{dN}{dt} = N$$

integrate $\Rightarrow N(t) = N_0 + N t$
where
 $N_0 - N_{|t=0} = \frac{V_{cylinder}}{V_0}$
(4) ideal gas
 $V_0 = \frac{RT_0}{P_0} = 1.4134 \times 10^{-4} \text{ m}^3/\text{mol}$
 $N_0 = \frac{0.15}{1.4134 \times 10^{-4}} = 106(.3 \text{ mol})$
 $N_0 = \frac{0.15}{1.4134 \times 10^{-4}} = 106(.3 \text{ mol})$
 $\frac{0}{100} N(t) = 106(1.3 - 10 t) \times$
(b) Using Frg. 3.3-3
 $\hat{V}_0(170K, 100 \text{ bar}) = \hat{V}_0(170K, 10 \text{ MPa})$
 $\approx 0.0035 \text{ m}^3/\text{kg}$
 $\hat{v} = (MW)\hat{V}_0 - 9.8 \times 10^{-5} \text{ m}^3/\text{mol}$
 $N_0 = \frac{0.15}{9.8 \times 10^{-5}} = 1529.8 \text{ mol}$
 $\hat{v} = N(t) = 1529.8 \text{ mol}$

 $P = \frac{RT}{V-5} - \frac{a}{V^2}$ From Table 6.4-1, we have av = 0.1368, bN = 3.864 ×10-5 $\Rightarrow 100 \text{ bar} = [x_{10}] P_a = \frac{8.314 \times 170}{V_a - 3.864 \times 10^{-5}} - \frac{0.1368}{V_a^2}$ JL Vo = 9.435 × 10 -5 m3/mol $N_0 = \frac{0.15}{9.425 \times 10^{-5}} = 1589.9 \text{ mo}$ "> N(t)=1589.9 - 10 t (2) Culculate T and P at t= 50 min, i.e. Tz, Pz. To calculate T2 and P2, we need an additional balance equation. system: the portion of the gas that always in the cylinder (closed system) Entropy balance : $\frac{ds}{dt} = 0 \leftarrow \frac{\alpha diabatics}{creversible} \qquad \frac{S_0 = S(t)}{S_0 = S(t)}$

(c) Using Van der Waals Eos

(A) ideal gas

$$feg (4,4+i) \quad d \leq = C_{V}^{*} \frac{dT}{T} + R \frac{dV}{Y}$$

$$C_{V}^{*} = C_{P}^{*} - R = 18.9 + 4.2 \times 10^{-3} T \quad (J/mo|K)$$

$$\Delta \leq = \sum_{0} - \sum_{t=50 \text{ min}} = 0$$

$$\int_{5_{0}}^{5_{t}-50 \text{ min}} d \leq = \int_{T_{0}}^{T_{2}} \frac{(8.9 + 4.2 \times 10^{-3} T)}{T} dT$$

$$+ 8.314 \int_{Y_{0}}^{Y_{2}} \frac{dV}{Y} = 0$$

$$\begin{cases} Y_{0} = 1.413 \times 10^{-4} \text{ m}^{3}/\text{mol} \\ Y_{2} = \frac{0.15}{1061.3 - 10 \times 5^{0}} = 2.672 \times (5^{-4} \text{ m}^{3}/\text{mol}) \end{cases}$$

$$i (8.9 \text{ Im} \frac{T_{2}}{170} + 4.2 \times 10^{-3} (T_{2} - 170) + 8.314 \text{ Im} \left(\frac{2.672}{1.413}\right)$$

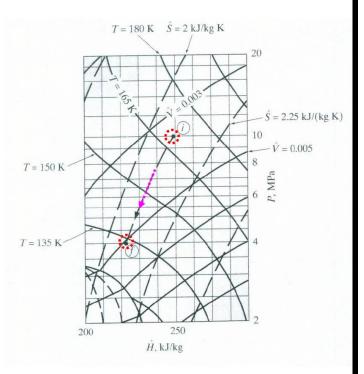
$$= 0$$

$$\Rightarrow \frac{T_{2} = 130.3 \text{ K}}{Y_{2}} = 40.5 \text{ bar}$$

(1) Using Fig. 3.3-3

$$V_{2} = \frac{0.15}{1529.8 - 10\times 50} = 1.0459.\times 10^{-4} m^{3}/mol$$

$$\therefore V_{2} = \frac{V_{2}}{MW} = 5.20 \times 10^{-3} m^{3}/lcg$$
(2) Find the initial pt. $(T = 1.70 K \cdot P = 10 M Pa)$
(2) Follow the constant - S curve down to the intersection with a curve of constant - V through $V = 5.2 \times 10^{-3} m^{3}/kg$
(3) This intersection gives T_{2} and P_{2}
(4) $T_{2} = /33 K \cdot P_{1} = 3.9 M Pa = 39 bar$
(5) Using VdW Eos
 $F_{3}(6.2-19) \Rightarrow dS = \frac{C_{2}}{T} dT + (\frac{\partial P}{\partial T})_{Y} dY$
 $vdW Eos \Rightarrow (\frac{\partial P}{\partial T})_{Y} = \frac{R}{Y-b}$



$$\int_{2}^{S_{0}} dS = \int_{T_{0}}^{T_{0}} \frac{dY}{T} dT + \int_{Y_{0}}^{Y_{0}} \frac{Q}{Y-b} dY = 0$$

$$(T_{0}, P_{0}) \int_{U}^{U} \frac{Q}{Y-b} + \int_{T_{0}}^{T_{0}} \frac{C_{v}}{T} dT + \int_{Y_{0}}^{Y_{0}} \frac{dY}{T} dY$$

$$(T_{0}, P_{0}) \int_{U}^{U} \frac{Q}{Q} - \int_{U}^{U} \frac{Q}{Y-b} + \int_{T_{0}}^{T_{0}} \frac{C_{v}}{T} dT + \int_{Y_{0}}^{Y_{0}} \frac{dY}{Y-b}$$

$$= R \int_{Y_{0}}^{Y_{0}} \frac{dY}{Y-b} + \int_{T_{0}}^{T_{0}} \frac{C_{v}}{T} dT + \int_{Y_{0}}^{Y_{0}} \frac{dY}{Y-b}$$

$$= R \int_{Y_{0}}^{Y_{0}} \frac{dY}{Y-b} + \int_{T_{0}}^{T_{0}} \frac{C_{v}}{T} dT$$

$$\begin{cases} \frac{Y_{0}}{Y} = \frac{0.1}{5} \frac{1}{58} \frac{1}{9.5 - 10850} = \frac{1}{327} \times 10^{-4} \frac{m^{3}}{m^{3}} \frac{1}{m0} \frac{1}{100} \frac{1}{100$$

The Principles of corresponding states

Ideal gas heat capacity:

- Intramolecular structure (e.g., bond length, vibration frequencies, configuration of constituent atoms, ...)
- Internal energy

Volumetric EOS:

- intermolecular forces (interactions of each molecule with its neighbors)
- External energy
- Intermolecular interactions depend on the nature of the molecules:
 - Spherical molecules (e.g., Ar, CH₄,)
 - Nonspherical molecules (e.g., n-C₁₀, n-C₁₆, …)
 - Molecules with permanent dipole moment (e.g., water, methanol, acetone, ...)
 - ♦ Molecules with permanent quadrupolar moment (e.g., CO₂, N₂, ..)
- Any one class molecular interactions are similar =>
- Volumetric EOS fits the volumetric data for one member of a class =>
- The same EOS is likely to fit the data for other molecules in the same class.

The Corresponding State EOS

- By analyzing van der Waal EOS (read pp.237-240), it is suggested that all fluids can obey the same EOS in terms of reduced T ($T_r = T/T_C$), reduced P ($P_r = P/P_C$), reduced $V(V_r = V/V_C)$. This is called the corresponding state theorem.
- Experiments verify the existence of such a possibility.

The Corresponding State EOS

- By defining Z = PV / RT
 - Two-parameter corresponding state is

 $Z = Z(P_r, T_r)$

- Three-parameter corresponding state is

 $Z = Z(P_r, T_r, \omega)$

where $\omega = -1 - \log_{10}[P^{vap}(T_r = 0.7) / P_C]$, the accentric factor.

Typically, the plot of Z vs P_r is used (the following pages).

The first generalized correction: the vdW EOS

Critical point:

- **The point of the highest temperature at which a liquid can exist.**
- ✤ An inflection point on an isotherm in the P-V plane.

$$\left(\frac{\partial P}{\partial \underline{V}}\right)_{T_c} = 0 \quad \& \quad \left(\frac{\partial^2 P}{\partial \underline{V}^2}\right)_{T_c} = 0 \text{ at } P_c \text{ and } \underline{V}_c$$

Also, the first non-zero derivative should be odd and negative. At critical point,

$$P_{c} = \frac{RT_{c}}{\underline{V}_{c} - b} - \frac{a}{\underline{V}_{c}^{2}}$$

$$\left(\frac{\partial P}{\partial \underline{V}}\right)_{T_{c}} = 0 \implies 0 = \frac{-RT_{c}}{(\underline{V}_{c} - b)^{2}} + \frac{2a}{\underline{V}_{c}^{3}}$$

$$\left(\frac{\partial^{2} P}{\partial \underline{V}^{2}}\right)_{T_{c}} = 0 \implies 0 = \frac{2RT_{c}}{(\underline{V}_{c} - b)^{3}} - \frac{6a}{\underline{V}_{c}^{4}}$$

$$a = \frac{9\underline{V}_{c}RT_{c}}{8} \implies b = \frac{\underline{V}_{c}}{3} \text{ then } \underline{V}_{c} = 3b, \ T_{c} = \frac{8a}{27bR}, \ P_{c} = \frac{a}{27b^{2}}$$
or
$$P_{c} = \frac{RT_{c}}{\underline{V}_{c} - (\underline{V}_{c} / 3)} - \frac{9\underline{V}_{c}RT_{c}}{8\underline{V}_{c}^{2}} = \frac{3}{8}\frac{RT_{c}}{\underline{V}_{c}} \implies Z_{c} = \frac{RT_{c}}{P_{c}\underline{V}_{c}} = \frac{3}{8} = 0.375 \text{ or } \underline{V}_{c} = \frac{8}{3}\frac{RT_{c}}{P_{c}}$$

$$a, b = f(T_c, P_c) \Rightarrow a = \frac{9\underline{V}_c RT_c}{8} = \frac{27R^2T_c^2}{64P_c} \& b = \frac{\underline{V}_c}{3} = \frac{RT_c}{8P_c}$$

$$vdW EOS:$$

$$\left[P + \frac{27R^2T_c^2/(64P_c)}{\underline{V}^2}\right] \left(\underline{V} - \frac{\underline{V}_c}{3}\right) = RT \Rightarrow$$

$$\left[\frac{P}{P_c} + 3\left(\frac{\underline{V}_c}{\underline{V}}\right)^2\right] \left[3\left(\frac{\underline{V}}{\underline{V}_c}\right) - 1\right] = 8\frac{T}{T_c} \Rightarrow$$

$$\left(P_r + \frac{3}{V_r^2}\right) (3V_r - 1) = 8T_r \text{ where } T_r = T/T_c, P_r = P/P_c, V_r = \underline{V}/\underline{V}_c$$

$$T_r, P_r \& V_r \text{ are reduced properties}(dimensionless)$$

- Two fluids, which have the same values of reduced T and P, have the same reduced volume (at the corresponding state)
- Two-parameter corresponding-states principle:

$$Z = \frac{PV}{RT} = Z(T_r, P_r)$$

The function Z is determined by experimental data or Fig. 6.6-2

The generalized chat of compressibility factor

Fig. 6.6-2



1.5

Three parameters CSP

- vdW EOS => Two-parameter CSP => All vdW fluids have the same
 Z_c = 3/8 = 0.375
- Table 6.6-1 shows Z_c for most real fluids ranges from 0.23 to 0.31
- Two-parameter CPS is failed => Three-parameter CSP

$$Z = Z(T_r, P_r, Z_c) [Fig. 6.6 - 3, Z = f(T_r, P_r) \text{ at } Z_c = 0.27]$$

or

$$Z = Z(T_r, P_r, \omega) \Leftarrow Pitzer (1955)$$

$$Z = Z^{(0)}(T_r, P_r) + \omega Z^{(1)}(T_r, P_r)$$

$$Z = Z^{(r1)}(T_r, P_r) + \frac{\omega - \omega^{(r1)}}{\omega^{(r2)} - \omega^{(r1)}} [Z^{(r2)}(T_r, P_r) - Z^{(r1)}(T_r, P_r)]$$

If $\omega^{(r1)} = 0 \Rightarrow Z = Z^{(r1)}(T_r, P_r) + \frac{\omega}{\omega^{(r2)}} [Z^{(r2)}(T_r, P_r) - Z^{(r1)}(T_r, P_r)] \Rightarrow$

$$Z^{(0)} = Z^{(r1)} \& Z^{(1)} = \frac{1}{\omega^{(r2)}} [Z^{(r2)}(T_r, P_r) - Z^{(r1)}(T_r, P_r)]$$

where ω : accentric factor (account for molecular structure):
 $\omega = -1.0 - \log_{10} \left(\frac{P^{vap}}{P_c}\right)_{T_r=0.7}$

 This CSP can not be expected to be applicable to fluids with permanent dipoles and quadrupoles.

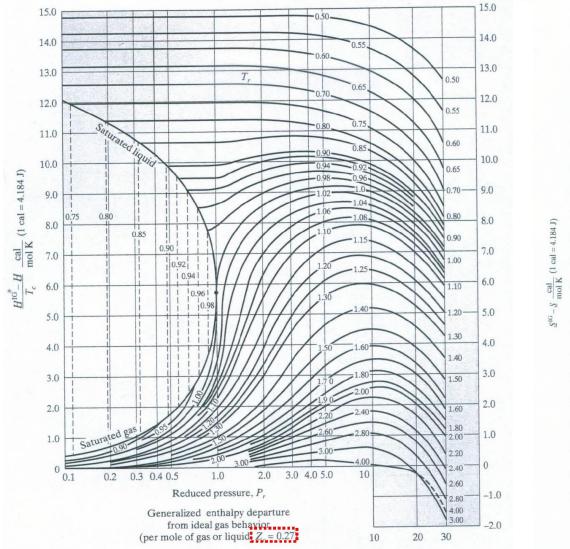
Departrure functions from CSP

 $\underline{\mathbf{U}} = \underline{\mathbf{H}} - \underline{\mathbf{PV}}, \underline{\mathbf{A}} = \underline{\mathbf{U}} - \underline{\mathbf{TS}}, \underline{\mathbf{G}} = \underline{\mathbf{H}} - \underline{\mathbf{TS}}$

Pitzer's three parameter CSP

$$Z = Z^{(0)} + \omega Z^{(1)}$$

$$\frac{H(T, P) - H^{IG}(T, P)}{RT_{C}} = \left[\frac{H(T_{r}, P_{r}) - H^{IG}(T_{r}, P_{r})}{RT_{C}}\right]^{(0)} + \omega \left[\frac{H(T_{r}, P_{r}) - H^{IG}(T_{r}, P_{r})}{RT_{C}}\right]^{(1)}$$
Similarly,
$$\frac{S(T, P) - S^{IG}(T, P)}{R} = \left[\frac{S(T_{r}, P_{r}) - S^{IG}(T_{r}, P_{r})}{R}\right]^{(0)} + \omega \left[\frac{S(T_{r}, P_{r}) - S^{IG}(T_{r}, P_{r})}{R}\right]^{(1)}$$
* From Tables or Charts



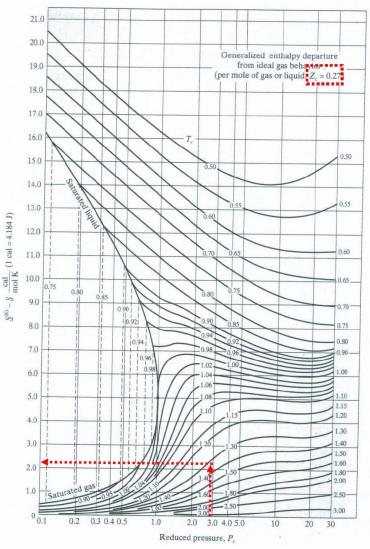


Illustration 6.5-1: Use of Generalized chat (CSP)

Solve illustration 6.5-1 by Using Figs. E.6-3-
6.6-5.
Data:
$$N_2$$
: $T_c = 126.2K$, $P_c = 33.94$ bar
 $Z_c = 0.29$
(sol)
Thitial Condition: $T_{V_0} = \frac{170}{126.2} = 1.347$
 $P_{V_0} = \frac{100}{33.94} = 2.946$
From $\frac{1}{100} = \frac{100}{7} = \frac{100}{33.94} = 2.946$
From $\frac{1}{100} = \frac{100}{7} = \frac{100}{$

$$\sum_{i=1}^{Let} S_{i} = S^{I} (T_{i}, V_{i}) + (S - S^{I})_{i}$$
$$S_{i} = S^{I} (T_{i}, V_{i}) + (S - S^{I})_{i}$$

$$S_{2} - S_{0} = S^{I4}(T_{2}, V_{2}) - S^{I4}(T_{0}, V_{0}) + (S - S^{I4})_{1}$$
$$-(S - S^{I4})_{0} = S^{I4}(T_{2}, P_{2}) - S^{I4}(T_{3}, P_{0}) + (S - S^{I4})_{2} - (S - S^{I4})_{0} (*a)$$

• Algorithm : (1) Assume $(\xi - \xi^{24})_2 = 0$ Solve $E_1(*b) \Rightarrow T_2^{(1)}$ Guess $T_2^{(1)}$ from ideal gas assumption (2) $P_2 = \frac{RT_1}{V_2} = \frac{Z(Tr_1, Pr_2)}{Fig. 6.6-3}$ Compute P2 by trial and errors $\begin{array}{c} (3) \\ T_2 \\ T_2 \\ T_2 \\ T_2 \\ Fig.6.6-5 \\ (5-5)_2 \\ (5-5)_2 \end{array}$ (4) Use Eq(*b) to solve new T2" ⁽⁵⁾ Check $T_2^{(2)} \approx T_2^{(1)}$ (6) If not converge back to step (2) with T,(2) Sol

$$T_2 = 136 \text{ K}$$

$$P_2 = 41 \text{ bar}$$

Generalized EOS

• van der Waals EOS $P = \frac{RT}{V-b} - \frac{a}{V^2}$

From critical point analysis, we have

$$a = \frac{27R^2T_C^2}{64P_C} \& b = \frac{RT_C}{8P_C}$$

If T_c and P_c of the fluids are known, the PVT behavior can be calculated, just like a two-parameter CSP.

More useful EOS =>

Peng-Robinson (PR) EOS is applicable for hydrocarbons, inorganic gases such as N_2 , O_2 , H_2S ,

$$P = \frac{RT}{\underline{V} - b} - \frac{a(T)}{\underline{V}(\underline{V} + b) + b(\underline{V} - b)}$$

Appling critical conditions, we have

$$a(T_{c}) = 0.45724 \frac{R^{2}T_{c}^{2}}{P_{c}} \& b = 0.0778 \frac{RT_{c}}{P_{c}}$$

Let $a(T) = a(T_c) \times \alpha(T) = a(T_c) \times [1 + k(1 - T_r^{0.5})]^2$

Fit "k" to vapor pressure data for some fluids of interest \Rightarrow

 $k = 0.37464 + 1.54226\omega - 0.26992\omega^2$

PREOS => (T_C, P_C, ω) <= three-parameter EOS

Departure functions from PR EOS

Departure H and S from the PR EOS [eqs. (6.4-29) & (6.4-30)]

$$\left(\underline{H} - \underline{H}^{IG}\right)_{T,P} = RT(Z-1) + \int_{\underline{V}=\infty}^{\underline{V}} \left[T\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - P\right] d\underline{V} = RT(Z-1) + \frac{T\left(\frac{da}{dT}\right) - a}{2\sqrt{2b}} ln \left[\frac{Z + (1+\sqrt{2})B}{Z + (1-\sqrt{2})B}\right] \\ \left(\underline{S} - \underline{S}^{IG}\right)_{T,P} = R ln Z - \left\{\int_{\underline{V}=\infty}^{\underline{V}} \left[\left(\frac{\partial P}{\partial T}\right)_{\underline{V}} - \frac{R}{\underline{V}}\right]\right\} d\underline{V} = R ln(Z-B) + \frac{\left(\frac{da}{dT}\right)}{2\sqrt{2b}} ln \left[\frac{Z + (1+\sqrt{2})B}{Z + (1-\sqrt{2})B}\right]$$

- Calculation procedure (in a single phase region)
 - * T_c, P_c and ω of the fluid are known => calculate b, κ, a(T_c)
 - Given T => calculate α (T) and then a(T)
 - ☆ At given T & P, solve <u>V</u> from the PR EOS or solve Z from
 - $* Z^{3} (1 B) Z^{2} + (A 3B^{2} 2B)Z (AB B^{2} B^{3}) = 0$

where B = Pb/RT and $A = aP/R^2T^2$

- ♦ Calculate da/dT
- ♦ Calculate departure <u>H</u> & <u>S</u>
- Advantages over two-parameter CSP
 - Analytic computation
 - Three-parameter model
 - Easy to recode the program if other EOS are to be used.

Illustration 6.7-1

Rework illustration 6-5-1 by using PREOS

<sol>

$$T_{0} = 170K \xrightarrow{PR EOS} Z_{0} = 0.6769$$

$$P_{0} = 100har \xrightarrow{(T_{c}, P_{c}, w)} Z_{0} = 0.9567 \times 10^{-4} \text{ m}^{3}/\text{mol}$$

$$\frac{V_{o}}{P_{o}} = \frac{Z_{o} RT_{o}}{P_{o}} = Z_{o} Y_{o}^{IG} = 0.9567 \times 10^{-4} \text{ m}^{3}/\text{mol}$$

$$N_{o} = \frac{0.15}{0.9567 \times 10^{-4}} = 1567.9 \text{ mol}$$

$$\stackrel{\circ}{n_{o}} \frac{N(t) = 1567.9 - 10 \text{ f}}{59.6.4 - 30} - 9.18 \text{ J/mol}.$$

$$N_{2} = 1567.9 - 10 \times 50 = 1067.9 \text{ mol}$$

$$V_{2} = \frac{0.15}{1067.9} = 1.4046 \times 10^{-4} \text{ m}^{3}/\text{mol}$$
Find T₂ and P₂ by iteration.

(1) Guess
$$T_{2}^{(U)}$$
 from ideal gas assumption
(2) Compute $P_{2}^{(U)}$ from the PR Eos with
 $T_{2}^{(U)}$ and Y_{2}
(3) Calculate $(5 - 5^{TG})_{2}^{(U)}$ at $T_{2}^{(U)}$, $P_{1}^{(U)}$
 $f_{I.}(b. 4 - 30)$
(4) Solve $S_{2} - S_{0} = 0$ to find new $T_{2}^{(2)}$
 $L \in (xa)$ in illustration $6.6 - 2$.
(5) Check $T_{2}^{(U)} \approx T_{2}^{(U)}$
(6) If not converge, back to step (2) with $T_{2}^{(e)}$

Solution:

 $T_2 = 134.66 K$ $P_2 = 40.56 \text{ bar}$ $(S - S^{26})_2 = -10.19 \text{ J/molk}$

Companys		1	
	<u>√</u> (m ³ /mol)	T2 (K)	P2 (bar)
Ideal gas	2.672×10-4	129.6	40.3
Fig. 3.3 -3	1.457 × 10-4	(33	39.0
Vd W	1.376×10-4	33.	39. 5
CSP	1.608 × 10-4	136	41.0
PR	1.405 ×10-4	134.7	40.6

Comparison

Estimation methods for critical and other properties

- To use either the generalized EOS or the method of corresponding states, we need information on the critical and other properties of interest.
 - * Find the properties from literature, if available.
 - * Estimate the properties from predictive models.
- Group contribution method => Estimate the properties of a compound from its molecular structure.
- Product Engineering: creating a compound or mixture of compounds with certain desired properties.
- Estimation of the critical properties from a group contribution method- Joback model

$$T_{c}(K) = \frac{T_{b}(K)}{0.584 + 0.965 \sum_{i} v_{i} \Delta T_{c,i} - \left(\sum_{i} v_{i} \Delta T_{c,i}\right)^{2}} P_{c}(bar) = \frac{1}{\left(0.113 + 0.0032 \text{ in } \sum_{i} v_{i} \Delta P_{c,i}\right)^{2}}$$

$$E_{c}\left(\frac{cm^{3}}{mol}\right) = 17.5 + \sum_{i} v_{i} \Delta V_{c,i} \quad T_{b}(K) = 198 + \sum_{i} v_{i} \Delta T_{b,i} \quad T_{f}(K) = 122 + \sum_{i} v_{i} \Delta T_{f,i}$$

$$\omega = -\log \frac{P^{vap}(T = 0.7T_{c})}{P_{c}} - 1 \quad or \quad \omega = \frac{3}{7} \frac{T_{br}}{1 - T_{br}} \log P_{c} - 1 \quad where T_{br} = T_{b} / T_{c}; \log P^{vap} = A + (B / T)$$

Joback Group Parameters

Table 6.9-1 Joback Group Contributions to Pure Component Properties

Group	$ riangle T_{\cdot}$	$ riangle P_c$	$ riangle V_c$	$ riangle T_{\dot{ ho}}$	$ riangle T_f$
-CH ₃ nonring	0.0141	-0.0012	65	23.58	-5.1
CH ₂ nonring	0.0189	0.0000	56	22.88	11.27
$-CH_2 - ring$	0.0100	0.0025	48	27.15	7.75
CH- nonring	0.0164	0.0020	41	21.74	12.64
CH- ring	0.0122	0.0004	38	21.78	19.88
C nonring	0.0067	0.0043	27	18.25	46.43
C ring	0.0042	0.0061	27	21.32	60.15
=CH ₂ nonring	0.0113	-0.0028	56	18.18	-4.32
=CH- nonring	0.0129	-0.0006	46	24.96	8.73
=CH- ring	0.0082	0.0011	41	26.73	8.13
=C(nonring	0.0117	0.0011	38	24.14	11.14
=C ring	0.0143	0.0008	32	31.01	37.02
=C = nonring	0.0026	0.0028	36	26.15	17.78
≡CH nonring	0.0027	-0.0008	46	9.2	-11.18
≡C – nonring	0.0020	0.0016	37	27.38	64.32
-F all	0.0111	-0.0057	27	-0.03	-15.78
-Cl all	0.0105	-0.0049	58	38.13	13.55
-Br all	0.0133	0.0057	71	66.86	43.43
-I all	0.0068	-0.0034	97	93.84	41.69
–OH alcohol	0.0741	0.0112	97 28	92.88	44.45
-OH phenol	0.0240	0.0184	-25	76.34	82.83
-O- nonring	0.0168	0.0015	18	22.42	22.23
-O- ring	0.0098	0.0048	13	31.22	23.05
C=O nonring	0.0380	0.0031	62	76.75	61.2
C=O ring	0.0284	0.0028	55	94.97	75.97
)=CH- aldehyde	0.0379	0.003	82	72.24	36.9
-COOH acid	0.0791	0.0077	89	169.09	155.5
-COO- nonring					
	0.0481	0.0005	82	81.1	53.6
<u> </u>		0.0005		81.1 -10.5	53.6 2.08
=O other	0.0481 0.0143 0.0243		82		
=O other	0.0143	0.0005 0.0101	82 36	-10.5	2.08
=O other -NH ₂ all	0.0143 0.0243	0.0005 0.0101 0.0109	82 36 38	-10.5 -10.5	2.08 2.08
=O other -NH ₂ all NH nonring	0.0143 0.0243 0.0295	0.0005 0.0101 0.0109 0.0077	82 36 38 35	-10.5 -10.5 50.17	2.08 2.08 52.66
=O other -NH ₂ all NH nonring NH ring N– nonring	0.0143 0.0243 0.0295 0.0130	0.0005 0.0101 0.0109 0.0077 0.0114	82 36 38 35 29	-10.5 -10.5 50.17 52.82	2.08 2.08 52.66 101.51
=O other -NH ₂ all NH nonring NH ring N- nonring -N= nonring	0.0143 0.0243 0.0295 0.0130 0.0169	0.0005 0.0101 0.0109 0.0077 0.0114 0.0074	82 36 38 35 29 9	-10.5 -10.5 50.17 52.82 11.74	2.08 2.08 52.66 101.51 48.84
=O other $-NH_2$ all NH nonring NH ring N- nonring -N= nonring -N= ring	0.0143 0.0243 0.0295 0.0130 0.0169 0.0255	0.0005 0.0101 0.0109 0.0077 0.0114 0.0074 -0.0099	82 36 38 35 29 9 0	-10.5 -10.5 50.17 52.82 11.74 74.6	2.08 2.08 52.66 101.51 48.84 0
=O other -NH ₂ all NH nonring NH ring N- nonring -N= nonring -N= ring -CN all	0.0143 0.0243 0.0295 0.0130 0.0169 0.0255 0.0085	0.0005 0.0101 0.0109 0.0077 0.0114 0.0074 -0.0099 0.0076	82 36 38 35 29 9 0 34	-10.5 -10.5 50.17 52.82 11.74 74.6 57.55	2.08 2.08 52.66 101.51 48.84 0 68.4
=O other $-NH_2$ all NH nonring N- nonring -N= nonring -N= ring -N= ring -N= all $-NO_2$ all	0.0143 0.0243 0.0295 0.0130 0.0169 0.0255 0.0085 0.0496	0.0005 0.0101 0.0109 0.0077 0.0114 0.0074 -0.0099 0.0076 -0.0101	82 36 38 35 29 9 0 34 91	-10.5 -10.5 50.17 52.82 11.74 74.6 57.55 125.66	2.08 2.08 52.66 101.51 48.84 0 68.4 59.89
=O other -NH ₂ all NH nonring NH ring	0.0143 0.0243 0.0295 0.0130 0.0169 0.0255 0.0085 0.0496 0.0437	0.0005 0.0101 0.0109 0.0077 0.0114 0.0074 -0.0099 0.0076 -0.0101 0.0064	82 36 38 35 29 9 0 34 91 91	-10.5 -10.5 50.17 52.82 11.74 74.6 57.55 125.66 152.54	2.08 2.08 52.66 101.51 48.84 0 68.4 59.89 127.24

Illustration 6.9-1 Group contribution

□Use the methods described above to estimate the properties of n-octane that has a boiling point of 398.8 K and ethylene glycol (1,2-diethanediol) that has a boiling point of 470.5 K. Also compare the estimates of using and not using the measured boiling points.

<sol>

The results for n-octane, $(CH_3)-(CH_2)_6-(CH_3)$

	Expt'l	Using T _b	Not using $T_{\rm b}$
T _b (K)	398.8	398.8	382.4
T _f (K)	216.4	179.4	179.4
T _c (K)	568.8	569.2	545.9
P _c (bar)	24.9	25.35	25.35
V _c (cc/mol)	492	483.5	483.5
ω	0.392	0.402	0.402

□ The results for ethylene glycol, OH-(CH₂)-(CH₂)-OH

	Expt'l	Using T _b	Not using $T_{\rm b}$
T _b (K)	470.5	470.5	429.5
T _f (K)	260.2	233.4	233.4
T _c (K)	645.0	645.5	589.3
P _c (bar)	77.0	66.5	66.5
V _c (cc/mol)	?	185.5	185.5
ω	?	1.094	1.094

The 3rd Law of Thermodynamics

- The 1st Law of Thermodynamics: the conservation of energy.
- The 2nd Law of Thermodynamics: the positive-definite nature of entropy generation.
- The 3rd Law of Thermodynamics:

The entropy of all substance in the perfect crystalline state (for solids) or the perfect liquid state (for liquids, e.g., He) is zero at the absolute zero of temperature

- $\Delta S = 0$ for any chemical reaction at 0 K.
- It is impossible to obtain a temperature of absolute zero.