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ATt Electrochemical techniques

Time domain (incompletel):
- Polarisation, (V-TI)

- Potential Step, (AV- I (1)) ST?«Z?Z;;EZ?
* Cyclic Voltammetry, (V ¢- I(V)) dvnamic
» Coulometric Titration, (AV - |I dt) elayxa’rion

* Galvanostatic Intermittent Titration (AQ - V (t) ffmn sient

Frequency domain:

- Electrochemical Impedance Spectroscopy verturbation of

(EIS) equilibrium state



NTUST 1. Introduction

Systems
Characterization of systems = Equivalent Circuits
Parameters of systems = Electric parameters (R, C, L..)

Mechanisms = Combination of Circuits

Ex. Electrochemical Systems

Kinetics of systems = Equivalent Circuits
Kinetic parameters of systems = Electric parameters
Kinetic mechanisms = Combination of Circuits

;}T_-:-X"x;‘*—(MX)m +e
(:}’IX);d_')MXﬂo; +e

MX*a==M*+ X"~




NTUST

MATERIAL-ELECTRODZ
SYSTEM
I 1
v
IS
EXPERIMENT
Ze(w) k M
EQUIVALENT
THEORY CIRCUIT
: Zeclw)
A
L] P
PLAUSIBLE e
PHYSICAL //
MODEL -
/ .
4 s
/" &
Y e
MATHEMATICAL
MODEL
Zy{w)

CURVE FITTING
(e.g. CNLS)

B
Y

| SYSTEM
L(‘.HAF-'\’}i\CTEFZiZAT!C)N 4




NTUST

—

Potentiostat F [
(? Cell

i/E converter Lock-in amp.

ac component + ¢

Waveform Low-pass

generator | T~ filter

dc component

t

Figure 10.1.2 Schematic diagram of apparatus for an ac voltammetric experiment.



Current {mA)

Measure Z(®,V,..)

lo+ Sl{)
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Vo + 8V (W
Voltage (V) 0 (@)

The result will be Z(w,V,) = 6V(®



Black box approach

Assume a black box with two terminals (electric connections).
One applies a voltage and measures the current response (or
visa versa). Sighal can be dc or periodic with frequency f, or
angular frequency o=2xf ,
with: 0< o< o

LA
e NIRRT

time

amplitude

Phase shift and amplitude
changes with o!



Rotation at ®

T T
/2
E
T (4] e
—F
—/2
N

A eori

Figure 10.1.3 Phasor
diagram for an alternating
voltage, ¢ = E sin wf.
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Figure 10.1.4 Phasor diagram showing the relationship between alternating current and voltage

signals at frequency w.
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Figure 10.1.5
Relationship between the
voltage across a resistor
and current through the
resistor.

Figure 10.1.6
Relationship between an
alternating voltage across
a capacitor and the
alternating current through
the capacitor.

©

X

®)

Figure 10.1.7 (a) Phasor diagram showing the relationship between the current and the voltages
in a series RC network. The voltage across the whole network is E, and Ey and E are its
components across the resistance and the capacitance. (b) An impedance vector diagram derived

from the phasor diagram in (a).
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““'37 2. Theory

a. Response in the time domain
b. Response in the frequency domain

@ A small-signal Stimulus

E = Egel®@t = Eg(coswt + jsinwt) [1]
@Response
| = |gel(wtt @) [2]

@ Impedance

Z = Ell =Egllgei®=12Z]ei®  [3]
= | Z| (cos¢p - jsing)
= ZRe - 14im _ [4]
tang = ZnsiZim [5]



ATUST Complex writing A

_E()  Ejcos(at) 7 cos(mt)
CI(t)  1,cos(wt—¢)  ° cos(wt—g)

Z(t)

Using Eulers relationship  exp(ig) = cos¢ +isin ¢

Mmooy

it is possible to express the impedance as a complex function. The
potential is described as,

E(t) = E, exp(jat)

and the current response as,

1(t) =1, exp(iot —19)
The impedance is then represented as a complex number,

L= TE =Z,exp(ig) = Z,(cosg+isin @)



Complex Plane &

Impedance = resistance’

= Admittance = ‘conductance’:
Le-
& 1 Z -jZ
__E_ Y((D) — — re2 J 2|m
Z ((D) Zre T Zim
hence:
1 Yre B -Yim
Z(0)=—— =t
Y ((D) Yre +Yim

Representation of impedance value,
Z = a+jb, in the complex plane 1



umsr Serial and Parallel Combinations of Circuit Elements

Very few electrochemical cells can be modeled using a single equivalent circuit element.

Instead, EIS models usually consist of a number of elements in a network. Both serial and
parallel combinations of elements occur.

Impedances in Series: —“ % 43— Ly=Li+L,+L,

Impedances in Parallel




TuST Capacitor

Take a look at the properties of a capacitor:| c = Agqe
Charge stored (Coulombs): 0=C.V — I _____

Change of voltage results e

in current, I | do ch mﬁ

it dt

Alternating voltage (ac):

dv,-e't . .
Impedance: l(wt)=C Odt = joC-V, ¢’

V(o) 1
B | (o) - JoC
Yo (0)=Z(w)" = joC

Admittance: Z. (0))

14



Case 1 : Pure Resistance AV
ZR = R
C
Case 2 : Ideal Capacitance {F
lc = CdE/dt
ZC = -J/G)C
L
Case 3 : Pure Inductor LRI
ZL = jCe)L

R,

Case 4 : Parallel RC Circuit m

Cy

1/Z = 1Rp + jwCp
Z = Rp/[1+(wRpCp)?]

- joRp2Cp/[1+(@RpCp)?]

ZRe = Rp/l1+(@RpCp)?]
Py = j@RpZCp/[H(prcpﬂ]

|Z]| = Rp/[1+(prcp)2]1/2

tan¢ = prCp

[6]

[7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]




“T“ST Bode diagram

At high frequency (@) :

|2 &= Tfet [16]
log |[Z]| = -loglp - logw [17]
|1z - 0 (18]
¢ — /2 [19]

At low frequency (@) :

l1Z] = Rp [20]
log|Z| = logRp [21]
¢ — 0 [22]

As &)*RpCp =1

¢ =7l4 [23]
1/w” = RpCp [24]
|z| = R/212 [25]

16



Nyquist diagram

I
o

ZRe? - ZreRp * Zim? =
(Zre - Rp12)2 + Z|m2 = (Rp/2)2
Cp = 1wRp

Zlm

g
D
J% i

/

/

i
\

logw® logw —

[26]

[27]

(28]
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Case 5 : Parallel RpCp + Series Rg

Rs

Z = Rg + Rp/(1+j@RpCp)

Z' = Z-Rs = Rp/(1+jwRpCp) [29]

[ZRe - (Rs + Rp/2)]2 + Zim2 = (Rp/2)2  [30]

Jog(Rs+ R,)’——\
4
b

18



Metal

Model of Double Layer

IHP OHP Cd
® 4 ¢ 2 RS

Specifically adsorbed anion

O = Solvent molecule

— \— = _ad

Diffuse layer NN N
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Fig.20 Examples of Nyquist and Bode plane plottings.
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Component Symbol Fundamental relation Impedance, Z(w)

Resistor R V =1IR R

Capacitor C I= Cd—v L
dt jwC
dv 1

Constant phase element Q, I1=Q,— e
di (jw) Q,
dl .

Inductor L V= LE jwL

22



Overpotential

The overpotential measures the degree of polarization. It is the electrode potential
minus the equilibrium potential for the reaction.

When the concentration in the bulk is the same as at the electrode surface, C_=C_*
and C,=C,*. This simplifies the last equation into:

This equation is called the Butler-Volmer equation. It is applicable when the polarization
depends only on the charge transfer kinetics.

Stirring will minimize diffusion effects and keep the assumptions of C_=C_* and C;=C,* valid.
When the overpotential, h, is very small and the electrochemical system is at equilibrium, the
expression for the charge transfer resistance changes into:

RT
R n i

From this equation the exchange current i, density can be calculated when R, is known.



Diffusion can create an impedance known as the Warburg impedance. This impedance
depends on the frequency of the potential perturbation. At high frequencies the Warburg
impedance is small since diffusing reactants don't have to move very far. At low frequencies
the reactants have to diffuse farther, thereby increasing the Warburg impedance.

The equation for the "infinite" Warburg impedance

Z o= a{w) (1-])

On a Nyquist plot the infinite Warburg impedance appears as a diagonal line with a slope of 0.5.
On a Bode plot, the Warburg impedance exhibits a phase shift of 45",
In the above equation, ois the Warburg coefficient defined as:

. RT ( 1 N 1 )
n B2 AV COo D, Cov Dy

o = radial frequency

D, = diffusion coefficient of the oxidant

D, = diffusion coefficient of the reductant

A = surface area of the electrode

n = number of electrons transferred

C* = bulk concentration of the diffusing species (moles/cms3)



Diffusion: Warburg impedance with finite thickness

The former equation of the Warburg impedance is only valid if the diffusion layer has an
infinite thickness. Quite often this is not the case. If the diffusion layer is bounded, the
impedance at lower frequencies no longer obeys the equation above. Instead, we get the

form: ) _ NV
Zo = e (1-]) tash (H(=)")

with,

o = Nernst diffusion layer thickness

D = an average value of the diffusion coefficients of the diffusing species

This more general equation is called the "finite" Warburg. For high frequencies where o—w

, or for an infinite thickness of the diffusion layer where d —« , this equation becomes the
infinite Warburg impedance.



aTust Warburg Impedance

E(p) RT

#(p)= I(p) (nF)2C"/D-p

Take the Laplace variable, p, complex:] N /
p=s+jo. Steady state:s =0,

~ “imag
@

which yields the impedance: 45°
Z
RT _ real
Z((D): - :Z (O)—1/2_J(D—1/2)
(nF)’C’/joD

with: In solution: - ) .

RT
Z - — =

° (nF)ZCO\/ZD ZO (G ) nzeA\/ELC; T J

Do Cay/Dy




TS Diffusion ( Warburg Impedance)

Warburg impedance = diffusion of chemical species
to a large planar electrode

Z = o(w)” (1-])
RT 1 1
er = r t *
ne B2 A4 2 (C’Gﬁfﬂg MC'R*«”DR)
Zo=aw” (1-]) tmﬂﬂf’“fj;ﬁ

SLOPE=-1/2

log |Z]

- —ljij-

log f 0 17 @12




wTuST Coating Capacitance

capacitor is formed when two conducting plates are separated by a non-conducting
media, called the dielectric. The value of the capacitance depends on the size of the

plates, the distance between

With,

g, = electrical permittivity

g, = relative electrical permittivity

A = surface of one plate

d = distances between two plates

Whereas the electrical permittivity is a physical constant, the relative electrical
permittivity depends on the material. Some useful g, values are given in the table:

Material g

vacuum 1

water 80.1(20°C)
organic coating 4-8

Notice the large difference between the electrical permittivity of water and that of an organic
coating. The capacitance of a coated substrate changes as it absorbs water. EIS can be used
to measure that change



aTST A Purely Capacitive Coating .

A metal covered with an undamaged coating generally has a very high impedance. The
equivalent circuit for such a situation is in the Figure:

2x101°
1x101¢

8x10°

-lmag

6x10° |

4x10° —

2x10° | | | |
450 470 490 510 530 550
Real

The model includes a resistor (due primarily to the electrolyte) and the coating capacitance in
series.

A Nyquist plot for this model is shown in the Figure. In making this plot, the following values
were assigned:

R =500 Q2 (a bit high but realistic for a poorly conductive solution)

C = 200 pF (realistic for a 1 cm? sample, a 25 pm coating, and ¢, = 6 )

f.= 0.1 Hz (lowest scan frequency -- a bit higher than typical)

f. = 100 kHz (highest scan frequency)

The value of the capacitance cannot be determined from the Nyquist plot. It can be
determined by a curve fit or from an examination of the data points. Notice that the intercept
of the curve with the real axis gives an estimate of the solution resistance.

The highest impedance on this graph is close to 101° Q. This is close to the limit of
measurement of most EIS systems



What is the impedance of an -R-C-
circuit?
Z(0) =R+ —— =R—j/aC
JoC
. 1
Admittance? Y (o) = : —
R-]j/oC
CDC: RC .
o’ C°R i oC

1+w’C*R®  "1+w’C’R’

'fime constant’:
T=RC ;



The same data are shown in a Bode plot in Figure. Notice that the capacitance can be estimated from the
graph but the solution resistance value does not appear on the chart. Even at 100 kHz, the impedance of
the coating is higher than the solution resistance

1000 I | I I I

01 1 0 100 1000 1-1071.100
f'reqi
56 | ,
o0 | | | L,

01 1 10 00 1000 11091 10
fren.



Constant Phase Element (for double layer capacity in real

electrochemical cells)

Capacitors in EIS experiments often do not behave ideally. Instead, they act like a
constant phase element (CPE) as defined below.

Z = Alio)™

When this equation describes a capacitor, the constant A = 1/C (the inverse of the
capacitance) and the exponent o = 1. For a constant phase element, the
exponent a is less than one.

The "double layer capacitor” on real cells often behaves like a CPE instead of like a
capacitor. Several theories have been proposed to account for the non-ideal
behavior of the double layer but none has been universally accepted. In most
cases, you can safely treat o as an empirical constant and not worry about its
physical basis.



wTuST The Voigt network

An electrical layer of a device can often be described by a resistor and capacitor in parallel

_M=h z=_R __  .=Rrc
_||_ 1+ it
C T

Re{Z} '1+[c-;~7]2

I

1.0

7= R e
looks like a 7= —i_
resistor at @t
05 low frequency o1 looks like a
capacitor at
high frequency

0.0

10% o4 0001 001 041 1 10 100 1000 10%  10%




umsr Cole-Cole Plots: Impedance Plots in the Complex Plane

When we plot the real and imaginary components of impedance in the complex plane
(Argand diagram), we obtain a semicircle or partial semicircle for each parallel RC Voigt
network:

1m {2) 1R}

} m=1/1 _I I_
I -

Z= R
1+ imt

o

\
L = s=—> Re (2)

The diameter corresponds to the resistance R.
The frequency at the 90° position corresponds to 1/t = 1/RC




Analyzing Circuits

By using the various Cole-Cole plots we can calculate values of the elements of the equivalent
circuit for any applied bias voltage

R contacts R buik R ins
1T |

o

= Re ({2}

By doing this over a range of bias voltages, we can obtain:
the field distribution in the layers of the device (potential divider) and the relative widths of the
layers, since C ~ 1/d
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NTHS Randles Cell

The Randles cell is one of the simplest and most common cell models. It includes a solution
resistance, a double layer capacitor and a charge transfer or polarization resistance. In addition
to being a useful model in its own right, the Randles cell model is often the starting point for other
more complex models.

The equivalent circuit for the Randles cell is shown in the Figure. The double layer capacity is in
parallel with the impedance due to the charge transfer reaction

300 | |

240 — —
k. R

120 — —

alA%A T (- nag),

Rct ar RP
Al - —
] I N B

0 60 120 180 240 300
ral
The Nyquist plot for a Randles cell is always a semicircle. The solution resistance can found by reading the real

axis value at the high frequency intercept. This is the intercept near the origin of the plot. Remember this plot was
generated assuming that R, =20 Q and Rp=250 Q2 .

The real axis value at the other (low frequency) intercept is the sum of the polarization resistance and the solution
resistance. The diameter of the semicircle is therefore equal to the polarization resistance (in this case 250Q ).



Bode Plot of Randalls cell

This Figure is the Bode plot for the same cell. The solution resistance and the sum of the solution resistance
and the polarization resistance can be read from the magnitude plot. The phase angle does not reach 90 as it
would for a pure capacitive impedance. If the values for R and R, were more widely separated the phase would

approach 90. Bode Plot for 1 mm/year Corrosion Rate

10000 , , ,

mag 100 =

- | | | | |
01 1 10 100 1ooo 11chac

[phase). _spt— _

| | | | |
01 1 10 100 1ooo 11ctac




Mixed Kinetic and Diffusion Control

First consider a cell where semi-infinite diffusion is the rate determining step, with a series solution
resistance as the only other cell impedance.

A Nyquist plot for this cell is shown in Figure 2-17. R, was assumed to be 20 W. The Warburg coefficient
calculated to be about 120 Qsec 2 at room temperature for a two electron transfer, diffusion of a single
species with a bulk concentration of 100 uM and a typical diffusion coefficient of 1.6 x10-°

cm?/sec. Notice that the Warburg Impedance appears as a straight line with a slope of 45°.

1000 , , ,

300 I I I I

mag 100 —
240~ — —

Lair N | | | | |
_imag]. 10
( 1 01 1 10 100 1oo0 11ch it

120 —

I I I I
0
0 &l 120 180 240 30C

real.
1

| | | | |
01 1 10 100 1oo0 11ctaed

f'rne-:j_i

—Al



TusT Example: Half a fuel cell

Adding to the previous example a double layer with capacitance and a charge transfer impedance, we get

the equivalent circuit: o o o
This circuit models a cell where polarization is due to a combination of

ff dl kinetic and diffusion processes. The Nyquist plot for this circuit is shown in
Il the Figure. As in the above example, the Warbug coefficient is assumed to
—\M*( — be about 150 W secV/2. Other assumptions: R,=20Q , R, =250Q , and
A4 f— Cy =40 pF
R
S00 |
4001 ]
_ 300 ]
I:-unag)i
- 200 —
100 ]
0 I I I I

0 o0 200 300 400 500
real.



The Bode plot for the same data is shown here. The lower frequency limit was moved down to 1mHz to
better illustrate the differences in the slope of the magnitude and in the phase between the capacitor and the

Bode plot

Warburg impedance. Note that the phase approaches 45° at low frequency.

et

1oo0

| ;

100

(phase ). _sp

0.0010.01

10 100 1000 1101167
f'reqi

0.0010.01

10 100 1000 11cl1c®
f'reqi




The different views on impedance data

The impedance data are the red points.
Their projection onto the Z“-Z° plane is called the Nyquist plot
The projection onto the Z"-v plane is called the Cole Cole diagram
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Absorption/ Butk

Bulk " Reaction ; : Generation Diffusion
Heuclion Recombination
C Cr Ca Cg(w) Cw(w)
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RB Rg RA RG (w) Rw ((.a))

A/R

Re(Z)

(0)

Fig3.29 Impedance schematic of an ideal solid electrolyte (from [118] } (\’
a) equivalent circuit
b) impedance plot
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Fig3.30 Impedance measurement of a Pt/YS Z[Pt cell in O, at 45 7.4°C (from [124])
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Fig. 1. Equivalent circuit for the HER on (a) nickel electrode, and on
(b) Raney nickel-coated electrode.

Akl

M+ H,O+e &2 MH, + OH  (ratew)) -
k_, ;
k,
MH,4 + H,O + e @ H, + M + O™ (rate v,)
k.,
k,
MHads + MHads 2 2M + Hz (rate 1)3)
. k-l

(2]
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FIGURE 4.1.19. Comparison of admittance and impedance spectra for a zirconia solid electrolyte
(Zr0;:6 mole % Y,0,) a1 240°C: (a) Experimenial admittance spectrum. (b) Experimental impedance

spectrum. (¢) Simulated impedance spectrum, using the circuit of Figure 4. 1.18 and parameier values
given in Table 4.1.4.

Rgi Rgb Re
— e
9i gb Ce

FIGURE 4.1.18. Circuit equivalent for a ceramic electrolyte according' to Bauerle {1969) and mox
eling the impedance of the grain interiors (gi), grain boundarics (gb) and elecirode (e).-

47



4
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Real cathode: Li,CoO,

00002420

LiCoO,, RF film on silicon.

Peter J. Bouwman, Thesis,
U.Twente 2002.

10.0

°0<¢ Measurement
+  Simulation

o © o 378V
® &
27Hz °
® o 360V ° o
& o 36Hz ° o
& ¢ 9 $3.84V° o @
¢ 63Hz $$ 0 IR
eoe, 388V ¢, o
€I>$ %9 %o &
4.06V % % %%
2.5 5.0 7.5 10.0 12.5

IS of a RF-film electrode: ()
‘fresh’;

(1) charged; (<) intermediate SoC's.

(+) CNLS-fit. Range: 0.01 Hz - 100
kHz.




