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Time domain (incomplete!):
• Polarisation, (V – I )
• Potential Step, (V – I (t) )
• Cyclic Voltammetry, (V f(t)- I(V ) )
• Coulometric Titration, (V - I dt )
• Galvanostatic Intermittent Titration (Q – V (t) )

Frequency domain:
• Electrochemical Impedance Spectroscopy

(EIS)

steady state
relaxation

dynamic
relaxation
transient

perturbation of 
equilibrium state

Electrochemical techniques
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Measure Z(,Vbias)

The result will be Z(,Vo) = V() / I()
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Assume a black box with two terminals (electric connections).
One applies a voltage and measures the current response (or 
visa versa). Signal can be dc or periodic with frequency f, or

angular frequency =2f ,
with: 0  

Phase shift and amplitude 
changes with !

Black box approach



8



9
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Complex writing

Using Eulers relationship

it is possible to express the impedance as a complex function. The 

potential is described as,

and the current response as,

The impedance is then represented as a complex number,
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Complex Plane
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Impedance  ‘resistance’
Admittance  ‘conductance’:

hence:
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Representation of impedance value, 
Z = a +jb, in the complex plane



Serial and Parallel Combinations of Circuit Elements

Very few electrochemical cells can be modeled using a single equivalent circuit element. 

Instead, EIS models usually consist of a number of elements in a network. Both serial and 

parallel combinations of elements occur.

Impedances in Series: 1 2 3eqZ Z Z Z  

Impedances in Parallel

1 2 3

1 1 1 1

eqZ Z Z Z
  
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Take a look at the properties of a capacitor:
Charge stored (Coulombs):
Change of voltage results
in current, I:

Alternating voltage (ac):

Impedance:

Admittance:
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Model of Double Layer
Cd

Rct

Rs



Typical AC Impedance Diagrams

*=1/RctCd
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Nyquist Diagram

Bode Diagram



21



22



Overpotential

The overpotential measures the degree of polarization. It is the electrode potential 

minus the equilibrium potential for the reaction.

When the concentration in the bulk is the same as at the electrode surface, Co=Co* 

and CR=CR*. This simplifies the last equation into:

This equation is called the Butler-Volmer equation. It is applicable when the polarization 

depends only on the charge transfer kinetics.

Stirring will minimize diffusion effects and keep the assumptions of Co=Co* and CR=CR* valid.

When the overpotential, h, is very small and the electrochemical system is at equilibrium, the 

expression for the charge transfer resistance changes into:

From this equation the exchange current i0 density can be calculated when Rct is known.



Diffusion: Warburg impedance with infinite 

thickness

Diffusion can create an impedance known as the Warburg impedance. This impedance 

depends on the frequency of the potential perturbation. At high frequencies the Warburg 

impedance is small since diffusing reactants don't have to move very far. At low frequencies 

the reactants have to diffuse farther, thereby increasing the Warburg impedance.

The equation for the "infinite" Warburg impedance 

On a Nyquist plot the infinite Warburg impedance appears as a diagonal line with a slope of 0.5. 

On a Bode plot, the Warburg impedance exhibits a phase shift of 45°.
In the above equation,  is the Warburg coefficient defined  as:

 = radial frequency

DO = diffusion coefficient of the oxidant

DR = diffusion coefficient of the reductant

A = surface area of the electrode

n = number of electrons transferred

C* = bulk concentration of the diffusing species (moles/cm3)



Diffusion: Warburg impedance with finite thickness

The former equation of the Warburg impedance is only valid if the diffusion layer has an 

infinite thickness. Quite often this is not the case. If the diffusion layer is bounded, the 

impedance at lower frequencies no longer obeys the equation above. Instead, we get the 

form:

with,

 = Nernst diffusion layer thickness

D = an average value of the diffusion coefficients of the diffusing species

This more general equation is called the "finite" Warburg. For high frequencies where 

, or for an infinite thickness of the diffusion layer where d  , this equation becomes the 

infinite Warburg impedance.



Warburg Impedance
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Take the Laplace variable, p, complex: 

p = s + j .  Steady state: s  0, 

which yields the impedance:
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In solution:



Diffusion ( Warburg Impedance)

Warburg impedance = diffusion of chemical species 

to a large planar electrode

Infinite diffusion layer thickness

Diffusion layer thickness 

Also, in the Warburg region, = 45º

http://www.consultrsr.com/resources/eis/diffusion.htm



Coating Capacitance

A capacitor is formed when two conducting plates are separated by a non-conducting 

media, called the dielectric. The value of the capacitance depends on the size of the 

plates, the distance between the plates and the properties of the 

dielectric. The relationship is:0 r A
C

d

 


With,

o = electrical permittivity

r = relative electrical permittivity

A = surface of one plate

d = distances between two plates

Whereas the electrical permittivity is a physical constant, the relative electrical 

permittivity depends on the material. Some useful r values are given in the table:

Material r

vacuum 1

water 80.1 ( 20° C )

organic coating 4 - 8

Notice the large difference between the electrical permittivity of water and that of an organic 

coating. The capacitance of a coated substrate changes as it absorbs water. EIS can be used 

to measure that change



A Purely Capacitive Coating
A metal covered with an undamaged coating generally has a very high impedance. The 

equivalent circuit for such a situation is in the Figure:

The model includes a resistor (due primarily to the electrolyte) and the coating capacitance in 

series.

A Nyquist plot for this model is shown in the Figure. In making this plot, the following values 

were assigned:

R = 500  (a bit high but realistic for a poorly conductive solution)

C = 200 pF (realistic for a 1 cm2 sample, a 25 µm coating, and r = 6 )

fi = 0.1 Hz (lowest scan frequency -- a bit higher than typical)

ff = 100 kHz (highest scan frequency)

The value of the capacitance cannot be determined from the Nyquist plot. It can be 

determined by a curve fit or from an examination of the data points. Notice that the intercept 

of the curve with the real axis gives an estimate of the solution resistance.

The highest impedance on this graph is close to 1010  . This is close to the limit of 

measurement of most EIS systems
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What is the impedance of an -R-C-
circuit?

Admittance?
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A Purely Capacitive Coating in the Bode Plot

The same data are shown in a Bode plot in Figure. Notice that the capacitance can be estimated from the 

graph but the solution resistance value does not appear on the chart. Even at 100 kHz, the impedance of 

the coating is higher than the solution resistance



Constant Phase Element (for double layer capacity in real 

electrochemical cells)

Capacitors in EIS experiments often do not behave ideally. Instead, they act like a 

constant phase element (CPE) as defined below.

When this equation describes a capacitor, the constant A = 1/C (the inverse of the 

capacitance) and the exponent    = 1. For a constant phase element, the 

exponent a is less than one.

The "double layer capacitor" on real cells often behaves like a CPE instead of like a 

capacitor. Several theories have been proposed to account for the non-ideal 

behavior of the double layer but none has been universally accepted. In most 

cases, you can safely treat  as an empirical constant and not worry about its 

physical basis.

( )Z A i  



The Voigt network

An electrical layer of a device can often be described by a resistor and capacitor in parallel



Cole-Cole Plots: Impedance Plots in the Complex Plane

When we plot the real and imaginary components of impedance in the complex plane 

(Argand diagram), we obtain a semicircle or partial semicircle for each parallel RC Voigt 

network:

The diameter corresponds to the resistance R. 

The frequency at the 90° position corresponds to 1/t = 1/RC



Analyzing Circuits

By using the various Cole-Cole plots we can calculate values of the elements of the equivalent 

circuit for any applied bias voltage

By doing this over a range of bias voltages, we can obtain:

the field distribution in the layers of the device (potential divider) and the relative widths of the 

layers, since C ~ 1/d



Randles Cell

The Randles cell is one of the simplest and most common cell models. It includes a solution 

resistance, a double layer capacitor and a charge transfer or polarization resistance. In addition 

to being a useful model in its own right, the Randles cell model is often the starting point for other 

more complex models.

The equivalent circuit for the Randles cell is shown in the Figure. The double layer capacity is in 

parallel with the impedance due to the charge transfer reaction

The Nyquist plot for a Randles cell is always a semicircle. The solution resistance can found by reading the real 

axis value at the high frequency intercept. This is the intercept near the origin of the plot. Remember this plot was 

generated assuming that Rs = 20  and Rp= 250  .

The real axis value at the other (low frequency) intercept is the sum of the polarization resistance and the solution 

resistance. The diameter of the semicircle is therefore equal to the polarization resistance (in this case 250 ).



Bode Plot of Randalls cell

This Figure is the Bode plot for the same cell. The solution resistance and the sum of the solution resistance 

and the polarization resistance can be read from the magnitude plot. The phase angle does not reach 90° as it 

would for a pure capacitive impedance. If the values for Rs and Rp were more widely separated the phase would 

approach 90°.
Bode Plot for 1 mm/year Corrosion Rate



Mixed Kinetic and Diffusion Control

First consider a cell where semi-infinite diffusion is the rate determining step, with a series solution 

resistance as the only other cell impedance.

A Nyquist plot for this cell is shown in Figure 2-17. Rs was assumed to be 20 W. The Warburg coefficient 

calculated to be about 120 sec-1/2 at room temperature for a two electron transfer, diffusion of a single 

species with a bulk concentration of 100 µM and a typical diffusion coefficient of 1.6 x10-5

cm2/sec. Notice that the Warburg Impedance appears as a straight line with a slope of 45°.



Example: Half a fuel cell

Adding to the previous example a double layer with capacitance and a charge transfer impedance, we get 

the equivalent circuit:
This circuit models a cell where polarization is due to a combination of 

kinetic and diffusion processes. The Nyquist plot for this circuit is shown in 

the Figure. As in the above example, the Warbug coefficient is assumed to 

be about 150 W sec-1/2. Other assumptions: Rs = 20  , Rct = 250  , and 

Cdl = 40 µF.



Bode plot
The Bode plot for the same data is shown here. The lower frequency limit was moved down to 1mHz to 

better illustrate the differences in the slope of the magnitude and in the phase between the capacitor and the 

Warburg impedance. Note that the phase approaches 45° at low frequency.



The different views on impedance data



Z´

Z”

The impedance data are the red points.

Their projection onto the Z“-Z‘ plane is called the Nyquist plot 

The projection onto the Z“- plane is called the Cole Cole diagram
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Impedance on individual electrode

(a) cathode vs. ref
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(b) anode vs. ref
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Real cathode: LixCoO2
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IS of a RF-film electrode: (○) 
‘fresh’; 
(□) charged; () intermediate SoC’s. 
(+) CNLS-fit.  Range: 0.01 Hz – 100 
kHz.

Peter J. Bouwman, Thesis, 
U.Twente 2002.

LiCoO2, RF film on silicon.


