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The criteria for equilibrium

For a closed system without shaft work,

dU : dVv
—O-_pi_
=0 dt
ﬁzghﬁ‘en & S, >0
dt T ¢ g

If this system kept constant V and no heat transfer (Q=0)
with its surroundings,

adUu
—=0 = U =constantorU = constant

di

a5 =S >0= Approachto equilibrium => entropyincrease

dr 7

[ S or S = Maximum ] at equilibrium in a closed system at
constant U and V.



The criteria for equilibrium

* For a closed system at constant T and V approaching

equilibrium,
M_o V. g S _Q,¢
dt dt t T °
dU-TS) _dA _ TS, <0
dt dt J

— Therefore, at equilibrium A reaches its minimum.

 Similar discussions can lead to that G, H and U reaches
their minimum at equilibrium.



Equilibrium

NI NII N=NI +NH
constant N, U,V | & St U=U"+U"
UI UII , "

VI Vi V=V +V

S=8"+5%

S=f(U,V,N)

dU=T1dS — PdV + GdN = dS:%dU+§dV—%dN

I I
ds’ =%dU[+%dVI—%dNI

7 1 I Vg
dS:dSI-Fd H:%dUI_l_%dUU %dVI‘F;—dVH—;;—dNI—?— NU

However,dN =dN' +dN" =0 = dN' =-dN" ,dU" =-dU" ,dV’ =-dV"
-/ | pl pr G G
s =g Jou o o= v G- o

At equilibrium, S = maximum or dS = 0. Since dU!, dV!, and dN'
are independent variables, thus

The composite system is uniform when the system is equilibrium.



Thermodynamic Equilibrium

Closed System at Constant T and V

Q&ﬁ_g K :d(U-TS) dA
a T = dr dt

A orA minimum at equilibrium in a closed system at constant T & V

:—TS L, <0

Closed System at Constant T and P
U _p_ P —Q— d(Pv) . ds _0 I d(U+PV-TS) dG
dt a1 %s dt dt
G orG= m|n|mum at equilibrium in a closed system at constant T & P

Equilibrium & Stability Criteria

~-7S,,,<0

System Constraint | Equilibrium criteria | Stability criteria
Isolated, adiabatic U&V= S = max. d2S <0
fixed-boundary system | constant dS=0

Constant T closed T&V= A = min. d2A >0
system with fixed constant dA=0

boundary

Constant T& P, closed [T&P= G = min. d2G > 0
system constant dG =0

Constant T & P, open T,P&M= |G=min d2G >0
system moving with constant dG =0

fluid velocity




Phase equilibria

Stability of Thermodynamic Systems

Stable state: d’S < 0
C, >0

or <0 =k, = —1[%} >0 (isothermal compressibility)
ov ), V-\or),

I.,T, : All pointsare(ﬁJ <0
: V)

T.

[F5]

s At point C, or 0
o

o3

0
JT
s Region a'to b’ or >0, unstable
v J,

" Region atob, @ > 0, unstable
ov ),

4~

Fig. 7.3-1




Phase Equilibrium

* Plot van der Waal egn. on P-V diagram

[@j <0 (The stability criteria)
a\/ T

(Maxwell’s rule or
lever rules)

(= (Rl 1 T T T L T Tonlaml
= fiquid l -
| T<T, - = _—
| . | Two-phase region i
yd 1 |
............................... i ~—— - | e
- @constant T, P, al e , g
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T, and T, isotherms (T <T))
Fig. 7.3-2 (van der Waals loops)

v, v,

P, <P, <P, <= three intersections between isobaric line P, and
EOS at T,

V” _ is unattainable by the stability criterion.

V,and V’_ are physically attainable.

V,and V’_ are two-phase coexists at T, and P,,.

Tan
.........
"



For real fluids

psat

1<

Water

VLE, 100°C <=>1 atm

at 1 atm, T <100°C (liquid)
T =100°C (boiling, VLE)
T >100°C (vapor)

at 100°C, P > 1 atm (liquid)
P =1 atm (boiling, VLE)
P <1 atm (vapor)

1 atm

heating

P
}

100°C
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Properties of two-phase mixtures

+
L
= o = T;/_—KV - (quality)
V . L
or -2 = KV 4 (Maxwell's rule or Lever rule)
- V' -V

lllustration 7.3-1
Computing the properties of a two-phase mixture

Compute the total volume, total enthalpy, and total entropy
of 1 kg of water at 100°C, half by weight of which is steam
and the remainder liquid water.

<sol>

V' =0.5%x0.001004 +0.5x1.6729 = 0.83645 m’ / kg
ﬁ:0.5><419.04+O.5><2676.1:1547.6kJ/kg
S =0.5%1.3069 +0.5x 7.3549 = 4.3309 kJkgK

11



Determine the vapor pressure at given temp

At vapor-liquid equilibrium, GV = G-
Since dG = VdP - S dT, integrate along the isotherm,

[LdG=["var & ap="Lapy)-Lav
G R, |4 V

pv"

— G -G'=0= jj“zdp =" a(pr)- Epdg _p " -vt)- ijdZ

Pa’ZL _ —

=areal +area Il - (area Il +area Il ): areal - area Il

= areal =areall

12



o

Phase Equilibrium

replot van der Waall fluid with V-L coexistence

region on P-V diagram

1.4 | |

1.3 [
1.2 [

I —

1.0 — ;

0.9 [—

Liquid vapor

coexistence
region

0.8 [—

0.7 [—

0.6 — ||
Wl —
04—

03— v

02—
0.1 —/

=3

Higher T —]

0

The equilibrium conditions
for V-L coexistence:

TV :TL PV:PL
G’ =G
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P-V-T phase diagram with single solid phase

Pressure, P ————»

Figure 7.3-5 The PV T phase diagram for a substance with a single solid
phase. [Adapted from J. Kestin, A Course in Thermodynamics, vol. 1. ©
1966 by Blaisdell Publishing Co. (John Wiley & Sons, Inc.) Used with
permission of John Wiley & Sons, Inc.]

14



Phase Equilibrium

1.4
13
1:2
1.1

* The P-V-T phase diagram :

0.8
0.7

P
PL

0.6
0.5
0.4
0.3
0.2

0.1

\\ Critical
point

\

\
\\ d ‘AQO‘

Pressure, P ——»

Critical point

region

Melting (fusion) curve

Critical point
(T:P.)

Solid Liquid Vapor

Vapor-pressure
curve

Triple point (7,. P,)

Sublimation pressure curve

g 15



P-T phase diagram

Fig. 7.3-6 Phase diagram in the P-T plane

Melting curve (SLE) Slope of melting curve is
generally steep => T;, =T,
P Critical point Meta stable:
Superheated liquid
= v subcooled vapor
(VLE)
1 atm  [eeeeeveennnenn
...................................... Triple point (SLVE)
Ttrip Tb T
. Tm
Sublimation-pressure
curve (SVE)
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Thermodynamic Stabllity

Stability Criterion: —

* First Stability Criterion: thermal stability

6,=Sy, <0
s _Ni(ﬁj _N(G(UT)) __Nfery L
L __ou\aU ), ou Ay T2oU)L, TX,
i.e,C, > 01

e o -

« Second Stability Criterion: mechanical stability
0, = (§z,u§\z,\1 _53,\42)/ §z,u <0

(&)
v (%)), (B, L e
ol ), avIlau ), N o TEV yu C,T?

S VAT NOTE: The stability criteria must be
A satisfied in each stable system¥phase)



80 % fill

50 % fill

32 % fill
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10 % fill
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P-T diagram of the critical fill
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G-T diagram

At VLE, G- = GV

[

.................................. At equilibrium, g = min.

~......‘. ......... e — ||qu|d phase atP & T < TP

liquid — vapor phase atP& T> T,

.
“,
s
.

P = constant : At critical point, 6 = 0; i.e.,

vapor oG" | [(oG”

. or )\ or )

TP T or
§L(TC’PC):§V(TC’P0)
also

QL(TC’PC)zc_;V(TC’PC)
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Fugacity and Gibbs Free Energy

The departure function of G:
Gdeparture(-l- P) G (T P) GIG(-I- P) J‘P 0( _Ejdp

Define “fugacity”, f, as: |, f _&(.P)-G°(.P)_ 1 IP(V-EJ 4P
RT RT 7o P

f_G.P)- G'°(T,P)
RT

— Thus, “fugacity coefficient” is Ing =In

E * Fugacity deviates from P when the :

as P>0, G>GIG, f 5P, and ¢ >1.  “material” behave less like an ideal gas. E
- 1 « Fugacity can be viewed as an indication !

' of non-ideality. :

_______________________________________

In the case of two-phase coexistence, G'= G (and also T'
— TII PI PII)

I Il
f
G'°(T,P)+ RTlnE =§'G(T,P)+lnF
AT P)=f"(T,P) and ¢'(T,P)=¢"(T,P) |- Fugacityis related to molar Gibbs free |
' energy and, therefore, can be applied in
, Situations involving molar Gibbs free
| energy. 20



Fugacity and Gibbs Free Energy

« The “fugacity coefficient”:

ding =dInf —dInP

d(Ing) = —{(HFQTHZIG)
d(Ing) = {(HR_EG)

Interms of T, P

Relation with departure function: Ing =1In
P-dependency / T-dependency:

{ _G(T,P)-G°(T.P) G (T,P)

Interms of T, V: Ing =|nf—

P RT RT
d(lnf)=(—alnfj dT +(—a'”f] dpP
or ), oP )
Vv 1 "
dT+(RT dep d(lnf)=—{(ﬂ %da +(Ljdp
i RT
dT+(\L—\4 ]dp RT(@Infj _ :(gj
RT oP )~ \oP )
IG
P RT RT % P

v

RT p
v

1

|

= jd\i—anJr(Z—l)
P RT %o

NOTE: Fugacity calculation will provide info on GPeraure gnd, therefore, G which is important for

the equilibrium between two phases (systems)

21



Molar Gibbs Free Energy & Fugacity of a Pure Component

« AtVLE, G r,P)=G'(T.P)

Note that dG =-S dT + V dP and dG =V dP at constant T.
Integrate

G(1,,)-G(5, R)=[ "V dp ()
If the fluid is anideal gas
G"(1,1,)-G"(5,R)=[ —dP (b)
eq.(a)-eq.(b)=>

G G RT
6(r.2)-6" (1, R)]-|6(z,.2)-G (%PJ]=I [V——}JP
Set P, — 0, all fluidsareideal gasesas P=0

= G(I,P=0)=G"(T,P=0)
LetT =T, & P=P,, then

~|G(r,p)-G"(1,p)|= [ (V—R—PT)JP

22



Fugacity and Gibbs Free Energy

* Fugacity can be considered as an evaluation of material
characteristic using the ideal gas state as the reference.

» For fugacity (and fugacity coefficient) analysis for
materials other than gas phase, we can applied the
following concept: an__c; (T.P)-G"(T,P)
-G (T P)-G"(T,P*)+G"(T,P*)-G(T,P*)+G (T,P*)-G"°(T,P)
= AG; p 1 psa + AGT pou + AG

ft L

—_ Therefore, RTInF AGy b1 psa +A[C_5§’;§at +A§T,P“‘—>T,P
- t(\f —ﬂ)dP +jp (v —ﬂjdp

Jpsa P P
= ( — ﬂde + RT In( j

P P P sat.T

= .Psat\LLdP ~RTIn F:at +RT ln(ij Poynting pressure correction,
P P P Jsar important only at high P or

_-_——— - .

fH(TLP) ([ 21 e ~ very low T
. Psat = (Ej (exp(_IPsat\iLdP] ’> 23

=T PRSTP

—— L = -



Fugacity and Gibbs Free Energy

. : . L __ psat f_ i P L
* Fugacity of a liquid: (T.P)=P (Pj exp(Rijwy dP)

— Atlow P, nonassociative liquid f-(T,P)=P%(T)

sat,T

— Al low P, associative liquid f“(T,P)= Psat(T)(%j

sat, T

] ) ] L _ psat
— Assuming incompressible, fL(T,P):PS"’“(f—) exp(\i (PRTP )j
sat, T

— Alternatively, if ¢ can be evaluated using corresponding states

(Fig.7.4-1), fr(T,P)=P (T)(fglp

» Fugacity of a solid: s p)- Psat(fa) exp(%zj:”\iadp)

— In general, P52 of solid is low and ¢s(1 p)= ps=(T)

sat,T

_ ] ) L S _ psat
— Pressure correction with incompressibility, ts(T p)=p= exp(\i (PRTP )j
24



Fugacity and Fugacity coefficient

» For convenience, Lewis defined a new thermodynamic
function, fugacity, by

f= Pexp{Q(T’ P)Q]G(T’P)} - Pex;{L jP[V—Ej dP}

RT R\~ P
+ Fugacity coefficient

st exp{ G(T,P)-G"(T, P)} _ exp{i IOP (V _ ﬂ) dP}

P RT RTP\(~ P
AsP—0, G(I,P)~G“(T,P)= f—>P &p—1

+ Criterion of equilibrium,

25



Calculation of fugacity from EOS

Ing=—— [V—Ede & dP=—d(PV)—£dV——dZ——dV
RT 0 P v Vv z I

Zn[f ] np=——|[ [E—P]&'ﬁ""ié'ﬁ"("z 1)  EOS,P=f(T,V) |
P RT = 7

where Z = PV/(RI), Z — las P — 0 (ideal gas)

» Pressure dependence of fugacity

RT[amf] _rr znp+ij [V—Ejdp =RT i+i[V—E) =V
oP ). oP RT P P RT P

+ Temperature dependence of fugacity

[Glnng _ -l (H_HIG)
or ), RI? ™ —

26



Fugacity of a pure gaseous species

v ( o,
zn(wjzij” RT’P[E—P}JV mz"+(z"-1)
P RT Y~ v

» At given T & P, !V (Or ZV) solve from the EOS .

At very low P => ideal gas assumption
PV=RTI & 7 =1

= h{@}:o = ¢=1 & f'(T,P)=P

At low to moderate pressures, two-term virial equation may be used,
i=z=1+—B(T)
RT 4

14
:>]n|:f(T’]))j|=]n¢V=ZB(VT)—]nZV, whereZV=1|:]+ ]+W:|
" s 2 RT

At higher pressures, the PR EOS provides a more accurate
description for hydrocarbons and simple gases,
_RT a(T)
Vb V(V+b)+b(V -b)
NP v Np(s —p) A nZV+(1+ﬁ)B
:l{ip }_l ¢ =(7" -1)-in(z" - B) 2\/531[2“(1_\5)3

o where A=aP/(RTV & B=Ph/(RT). _ . _ . __ ... . .27




Fugacity calculation (1)

lllustration 7.4-1

- Use the volumetric information in the steam tables of Appendix

A.lll to compute the fugacity of superheated steam at 300°C and
8 MPa

1 c»(.. RT
f:Pexp{ﬁL (K—?}H)}

= From superheaed steam tables at T = 300°C,we have I}arPfrom0.0JMPa fo 8.0 MPa.

= Calculate the integral numerically

3
[ (K—Ejd})z _1.093 %10 M
0 P mol

<sol>

3
_1.093x10= " MPa

£ =8 MPaxexp mol — 6.397 MPa

3
573.15 K x 8.3 14x 10 MPam
mol K

$=f/P=0.7996

Fugacity coefficient of the superheated steam at 1000°C and
10 MPa is about 0.9926. Its behavior is closer to an ideal gas.

28



Fugacity calculation (1)

lllustration 7.4-2

+ Use other data in the superheated steam tables to calculate the
fugacity of steam at 300°C and 8 MPa

<sol>
f(T =300°C,P=8 MPG)= Pexp Q(3000C, 8 MPG)_QIG(SOOO C.8 MPCI):|
RT

~

G=H-T1S

H(300°C, 8 MPa )= 2785 .0 ki/kg, $(300°C,8 MPa)=5.7906 ki/kg K

(300°C, 8 MPa)=2785.0—- 57315 x 5.7906 = —533.88 kI/kg = G(300°C,8 MPa)=-9617.9 T/mol
“(300°C, 8 MPa )= G™(300°C, 0.01 MPa )+ jma vap

0.01MPa™

1

IG(3OO°C, 0.01 MPa)= 1—}(300°c7, 0.01 MPa)— TS’(BOO”C, 0.01 MPa)= 3076.5—573.15x9.2813 = —2243 .1 kl/kg
= g"‘;(_%oo"c, 0.01 MPa)= ~2243.1x18.015 = —40409 J/mol

8§MPa

G"*(300°C, 8 MPa )= —40409 +

0.0IMPa

%dp = —40409 +8.314 x573.15x In(8/0.01 ) = —8555.7 J/mol

~9617.9 —(~8555.7)
573.15x8.314
¢ =1/P =6.402/8 =0.80

f=8MPax exp( j =6.402 MPa

Excellent agreement with the results obtained in lllustration
7.41

29



Fugacity calculation (l1)

lllustration 7.4-3
» Calculate the fugacity of saturated steam at 300°C

<sol> G(300°C,8.581 MPa)- G (300°C,8.581 MPa)

fV(T:300°C,P:8.581 MPa):Pexp{_ RT }

-9376.8-(-8221.6)
8.314x573.15

AtVLE, [V = fL(300"C, 8.581 MPa): 6.7337 MPa

lllustration 7.4-4 & 7.4-5

.- Calculate the fugacity of pure ethane and pure butane at
373.15 Kand 1, 10, 15 bar from virial equation and the Peng-
Robinson EOS. B¢ (373.15 K) = -1.15 x 10 m3/mol, Bg, (373.15
K) =-4.22 x 104 m3¥mol; T_, P, ®

:8.58]exp{ }:6.7337 MPa

<sol>
» Two-term virial equation is applicable up to about 10 - 15 bar.
- The results from two models are only slightly different.

» The differences would become larger as the pressure

increases or the temperature decrease. -



Fugacity coefficient from principle of corresponding states

_exp[RTj v _’G)dp —exp|:j ——1 dP}—exp{LPr[Z(T,‘,E‘)—l]dlnP,,} or

/n¢ j )-1ldm P 13 T
s " Generalzed fugaity coeticients / / e
Fig. 7.4-1 Generalized : | M.
fugacity coefficients of g S o & il
pure gases and liquids __ SN "°$§§\S‘mﬁ/ -
;;: 08 Sature”b?:,b () \&\§S5&ﬁ - ;;:—
RRMMRNNNNET/
Faa WA=
AN R NE NN\ S
SN
FRWORN\EEZ
IANANANNN-E—
ol
I
00.1 02 0.3 0405 IiO 20 3.0 4050 10 20 30

Reduced pressure, P,

Figure 7.4-1 (Reprinted with permission from O. A. Hougen, K. M. Watson, and R. A.
4+ Ragatz, Chemical Process Principles Charts, 2nd ed., John Wiley & Sons, New York, 1960.)
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Fugacity of a pure liquid

ln[f (r.p )J: : f—jLR”P[R—VT—P]dV Inz*+(z" -1)

P RT -
4, 7'+ (1428
228 | 75 +(1-2)B

Fugacity calculation for liquids from some available data

Ing" =(z" -1)-in(z" - B)-

L
RT In g = RTln[f?J _ j;(z—R—PTJdpz G-G"

-7 (V——)dP+ RTAW D) 1t [ (V—%Jdp
’

_RTIng,, + L [V —%JJP = RTIn s + L‘f KdP—RTj;@ %

vap
_RTln(f XLJ+ " ydp
R~ P pr®

”»

I A
e (AN EO R N ey

Poyntihg pressure correction
Only important at high pressures

32



Fugacity of liguids and solids

If neglect the Poynting term
1 P)=1,(0)=P"(8).r
If total pressure and vapor pressure are sufficiently low.
by ~1 = fHTP)=P(T)
except for associated fluids, e.g., acetic acid, which may form dimers

If liquid is incompressible,

FHTP) =P, exp{K(P P )}

RT
Fugacity of a pure solid

. o 1 P S ~ PDsat 1 P S
3(r, P)_ (P t¢mtj)exp{ﬁ J'PWK dP} ~ P exp[ﬁ pr dP}

Solid at low total pressures
fS (T, P) _ Psar(T)

Solid at moderate or high total pressures

vS(p-p) vS(p—-p)
S _ psat LA ~ psat .
f (T’ P) =P (T sat,T exp|: RT :| =P (T)exp|: RT

33



Calculation of Pure Fluid Phase Equilibrium

Computation of vapor pressure from an EOS
Pure fluidat VLE,F=3-P=3-2=1
Given T, calculate PvaP for GV = G- or fV=f-
Calculation procedure
given T¢, Pg, ®
given T & guess P
solve EOS to find V- & VV (or Z- & ZV)
calculate f- and fV
check f- =1V ?
No, adjust Prew = pold x (fL/fV), then go to step 3

Yes, Pvap = P, VL & WV

34



Enter T, P, ®

¥

Enter 7 and guessed value of P

'

Flow sheet of a computer
program for calculation of s s

Egs. 6.7-1, 6.7-2, and 6.7-3

the P2 using the PR EOS i

Compute A and B, where
A =aP/R’T? and B = Pb/RT

Fig. 7.5-1 v

Solve Eq. 6.7-5 for Z"- and ZV

{

Compute f" by substituting
ZVinto Eq. 7.4-14a

{

Compute f* by substituting
Z"into Eq. 7.4-14b

'

fL
% | f—v—l |<0,0001?

A

48 Print the equilibrium
el £ (vapor) pressure

'

Exit or repeat calculation
for another temperature 35




lllustration 7.5-1

Compute the vapor pressure of oxygen over the temperature
range of -200°C to the critical temperature. Also compute
specific volume, enthalpy, and entropy along the VLE phase
envelope.

Fig. 7.5-3 Pvap of O, calculated using the PR EOS

T (K)
, 160 140 120 100 80

In PP (bar)
P"* (bar)

3 S N SR SO
0.6 0.7 0.8 0.9 1.0 1.3 12 13 14

1/T (K) x 102

Figure 7.5-3 The vapor pressure of oxygen calculated using
the Peng-Robinson equation of state. 36



Phase Equilibrium: Gibbs Phase

Rule

For a single-component, single-phase system, the state (and
thermodynamic properties) can be specified by specifying two state
variables.

— Thus, we say a one-component, one-phase system has 2 degrees of
freedom.

— In order to fix the total size (and total properties), we also need to specify its
mass or one of its extensive properties.

The degree of freedom, # = (No. of variables) — (No. of equations)
— Variables, needed to specify the state of a system.
— Equations, already implied by thermodynamic rules.
For a single-component system with the presence of more than one
phase, Gibbs phase rule gives the number of degrees of freedom.
— Let 7 = number of phases,
It needs 2 state variable for each phase, total number of variables = 2P

Equilibrium conditions (T'=T", P'=P!l, G'=G!") for every two coexistence
phases, total number of mdependent equations = 3 (P-1)

F=2P-3(P-1)=3-2P (forsingle-component system)
— When P =1, F=2 (need two state variables to specify the state).
When P =2, F =1 (need one state variable to specify the state).
When P = 3, =0 (need no state variables to specify the state). 37



Phase Equilibrium: Gibbs Phase

* For a single-component system with more than one phase,
— We need F (= 3 — P) variables to specify the state of each phase.

— In addition, we need 2 — 1 thermodynamic properties to specify the mass
distribution among phases in the system, e.g., in the form as

* For multi-component system with more than one phase
F=PC+1)-(C+2)(P-1)=C+2—-7P (Gibbs Phase Rule)

— C: total number of components in the system.

— For each phase, we need to specify the composition for C-1 components
and two state variables of each phase of a system. Therefore, there are
(C+1)P variables.

— Equilibrium conditions give C+2 equations between two coexistence
phases.

38



Specification of the Equilibrium Thermodynamic State of a
System of Several Phases

The Gibbs Phase Rule for a One-Component System
For one-phase & one-component system, the degree of freedom (d.o.f.) is 2.
For p-phase & one-component system, there are

+ 2P of independent state variables

+ 3 (P-1) relationships

(TI = TII, TI = TIII, ), (PI PII PI PIII ) (GI GII GI GIII, )

» F=2P-3 (P-1)=3-P
The character of the variable to be specified as d.o.f is not
completely arbitrary.
e.g., VLE for one-component system, F=3 -2 =1

+ Specify either V- or VV => Fix the thermodynamic state of both phases.

» Specify either V or any other molar property of the two phases

combined is not suitable for d.o.f. specification.

To fix the thermodynamic state of each of p phase in equilibrium, we
should specify (3 = P) properties of the individual phases.

‘ll .t
‘

ey Hl-x" )t

.Q
‘..‘- ".v

i‘-.Q
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Determine the distribution of mass or number of moles

between the phases for a one-component system

Variables: x|, x!l, ...., xP (P variables)

P

Relation: fo _q (1 relation)

i=]

Need (P - 1) additional specific properties of the multiphase system

Z X0 = th ermodyn amic property perunit mass for whole System)

e.g., VLE for one-component system (3-P=1; P-1=1)
Given T => Pvar, VL VYV HL HY, 8L, SY, .....

If we know any one thermodynamic property of the two

phases mixture (e.g., V), we can calculate the distribution of
mass or no. of moles, then calculate H, S,

V=x"1" +(]-xV) V' = solvex”, and thus x".

To determine the total size of the system, we need one
extensive property, e.g., V, then NV = (VIV) x¥and N- = (VIV) xt
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Example: Triple point of a pure substance

F=3-P=0
+ d.o.f. =0, no state properties of the individual phases should
be specified.

+ Calculate T,, P, from fS = f- and f- = fV, then VS, VL, VV, HS, HL,

P-1=2
+» Two additional variables should be specified to determine
the distribution of mass between vapor, liquid, solid.

+ e.g.,Vand H =>xY, x\, thus xSand then S, G, ....

1 extensive property
» e.g., Vis given, then total number of mole N = V/V and
= NY'= (VIV) x5 N-= (VIV) x-; NS = (VIV) x®

“*Duhem’s Theorem: For a closed system at given masses of each species,
the no. of independent variables is 2
*2+(C-)P+P]-[(P-)C+C]=[(C+1)P+P] - [(C+2)(P-1) +C] =2
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Thermodynamic Properties of Phase Transitions

In a P-T diagram

« Slope of the VLE line => Rate of change of the vapor
pressure of the liquid with temperature

«~ Slope of the VSE line => Rate of change of the sublimation
pressure of the solid with temperature

+ Inverse of the slope of the SLE line => The change of the
melting temperature of the solid with pressure.

At phase equilibrium,

Notethat
I 7
Q (T;P): Q (T,P) [a—PJ #O(nothor‘z’zonta/)dueto AS#0& AH #0
aT GI GU
or
cP .
dGI _ dGII — # o0 (notvertzcal) dueto AV #0
~ el cT G'=c”
I v 7 AT .
—V'dp—S'dr =v"dp-s"dr Generally,

SinceP and T arethe samein both phases, A, H>0 and A,V >0 = (a—P} >0
0 - = s oo

P ST-S" AS AH/T
O Jyon V' -V" AV 4y i

Sncooooococoonocccoo TR ‘ ................................... (GP

A >0 and A, V<0 = ] <0
o aT legzz

=1 increasesas Pincrease

m

Water is an exception,

Clapeyron equation =T decreasesas Pincrease




Clausius - Clapeyron Equation

SinceV' >>V"' = AV =V"

Assuming that vapor phaseis ideal= V" = RT / P
dpP®  P"PAH™

— ~— whereAH™ =H" -H"
darT RT
L
L ) s ppe— Clausius-Clapeyron
: dT = RT2 S equation
vap vap o
72 (Tz):jT2 AL " r
AT
Assuming that AH™ ;tf(T)
p L) _—AH™ (1 1 P
P(r) R \L T

Solid

Triple point (T, P))

Sublimation pressure curve

T

lllustration 7.7-1: Use of the Clasusius-Clapeyron Equation
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Correlations of Vapor Pressures

Integratethe Clausius- Clapeyron Equation

. vap
= nP"" = AH +C = nP™ :A—g where B=AH"" /R
Antozneequatzon
N ;(1 200kPa)

i +C ¢

Riedel Equation : ln P = 4+— B +CinT + DT6 E

(fromlowP up lto critical P)
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lllustration 7.7-2: Interrelating the Thermodynamics of
Properties of Phase Changes

Estimate heat of sublimation of ice, heat of vaporization of water,
heat of fusion of ice, the triple point of water from the Clausius-
Clapeyron equation with the sublimation pressure and vapor
pressure data of water.

ice | T (°C) | PY2? (mmHg) | water | T (°C) [ PVa (mmHgQ)

-4 3.28 2 5.294
-2 3.88 4 6.101
<sol> (a)
3.88
A, Z"(azs}
e ——=6130 = A,,,H = 50.97kJ/mol
271.15  269.15
(D)
6.101
a5
e ——=5410 = A, H = 44.98kJmol
277.15  275.15
(c)
A =H, o~ o= ~H )=~ )= A=A =5.99 kJ/mol
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(d)
At triple point temperature (T; ) P =P =P,

Solvel & P fromthe following simultaneous equations:

ApH _ o _ In(5/3.88)
R 1 1
7, 27115
H
AH _ (R /5.294)
R 11
T, 275.15

= I, =273.279 K & P, = 4.627 mmHg
= Experimental values: T, =273.16 K & P =4.579 mmHg

Estimate sublimation pressures and vapor pressures from the
Clausius-Clapeyron equation

.Psub 1 1
In = —6130(—— J
3.838 T 271.15

' vap
| L =—5410(1— ! J
5.294 T 275.15

eg., Ps”b(— 10° C) =1.951 mmHg (Expt’l 2 1.950mmHg )
P"*(10°C)=9.227 mmHg (Expt'l : 9.209mmHg )
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Phase Transition Properties

First-order phase transition, e.g., V-L transition
— GY =G, G is continuous during transition.
— W=VL SV£SHHY2HY YV, S, H are discontinuous during

transition. (an (an
o . L — | ==-S and |—=| =V
— Cy, Cp are infinite during phase transition.\ oT /, oP );

Second-order transition, e.g., structural rearrangement
of quartz
-V, S, G, are continuous during transition. s

— Discontinuous during phase transition occurs at the second
order derivatives of G, e.g., C.

1.34 —

&

-3
Third-order transition or* ), \oT)y T< |
— ...(no expt observation yet)

C,UlgK)

|

1.0 |

200 400 46?()

T (°C) —»




Thermodynamic Properties of

Small System

* For small systems, surface phenomena
contribute more significantly to the properties of a
system.

— Surface tension contribution to work (force-
displacement) cannot be neglected. Work due the
effect of surface tension = o dA.

E-balance for a closed system (no Wy),
du . _dv _dA
ot 2T G T
For spherlcal drops V =4nr3/3 , A = 4nr?,
dU - 20 dr
a2 ( jdt
du . dr r->0,P. ,>P

int

or —
dt Q lnt dt I’%OO P 9P

int

— Surface charge contribution, if any, and others.
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Thermodynamic Properties of

Small System

Table 7.8-1 Surface Tension at a Liquid-Vapor Interface

Liquid Temperature (°C) o (dyne/cm)*
Water 20 72.9
25 T2,
Methanol 20 22.7
Ethanol 20 22,1
1-Octanol 20 27.6
Benzene 20 28.9
Aniline 20 434
Glycerol 20 64.0
Perfluorohexane 20 11.9
n-Heptane 20 204
n-Octane 20 21.6
Propionic acid 20 26.7
Mercury 20 487
Sodium 139 198
Sodium chloride 1073 115

*Divide by 1000 for J/m?>.
Table 7.8-2 Interfacial Tension at a Liquid-Liquid Interface

Liquid Temperature (°C) o (dyne/cm)*
Water/n-butyl alcohol 20 1.8
Water/mercury 20 415
Water/benzaldehyde 20 155
Water/diethylene glycol 25 51
Mercury/n-hexane 20 378

*Divide by 1000 for J/m?. 49



Thermodynamic Properties of

Small System

* For the calculation of fugacity of small droplets

fd&opcr,m:chr,Fam)=fL(T’P+2r—aj=ftcr,p>exp[20VLj

rR;'
— The fugacity of the drop is always larger than the fugacity of the
bulk liquid at the same T and P.

10* | 1 | | |

103
100

RT In[f,(T. PYA(T. P)] (J/mol)

Gdrup_ G
p—
e
N

| | | | | I | | |
—7
10° 10® 107 10° 10° 10* 102 0.01 0.1 1 10

r(m)
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Thermodynamic Properties of

Small System

« Effect of the larger fugacity of the drop than that of the
bulk liguid at the same T and P:

The boiling point of small drops will be lower than that of the bulk
liquid.

Or, small drops vaporize more easily. The vaporization process is
accelerated due to gradual decrease in droplet size.

Condensation of vapor into drops will not be as easy as that of the
bulk liquid. A lower T will be needed which is the subcooling.

Superheating of boiling liquid can also occur.

Similar phenomena occur in other phase transitions, e.g.,
crystallization, solidification.

Ostwald ripening.
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