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1. Criteria for Equilibrium and for Stability

2. Phase Equilibrium

3. Fugacity 

4. Phase Transition Phenomena

5. Properties of Small Systems
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The criteria for equilibrium
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The criteria for equilibrium

• For a closed system at constant T and V approaching 
equilibrium,

– Therefore, at equilibrium A reaches its minimum.

• Similar discussions can lead to that G, H and U reaches 
their minimum at equilibrium.
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Equilibrium
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Thermodynamic Equilibrium
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Phase equilibria

7



Phase Equilibrium

• Plot van der Waal eqn. on P-V diagram
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For real fluids
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Properties of two-phase mixtures
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Determine the vapor pressure  at given temp
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Phase Equilibrium

• replot van der Waal fluid with V-L coexistence 

region on P-V diagram

Higher T
The equilibrium conditions 

for V-L coexistence:
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P-V-T phase diagram with single solid phase
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Phase Equilibrium

• The P-V-T phase diagram
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P-T phase diagram
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Thermodynamic Stability

• First Stability Criterion: thermal stability

• Second Stability Criterion: mechanical stability
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G-T diagram
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Fugacity and Gibbs Free Energy

• The departure function of G:

• Define “fugacity”, f, as:

– Thus, “fugacity coefficient” is

as P0, GGIG, f P, and f 1.

• In the case of two-phase coexistence, GI = GII (and also TI 

= TII, PI = PII).
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• Fugacity deviates from P when the 

“material” behave less like an ideal gas.

• Fugacity can be viewed as an indication 

of non-ideality.

• Fugacity is related to molar Gibbs free 

energy and, therefore, can be applied in 

situations involving molar Gibbs free 

energy. 20



Fugacity and Gibbs Free Energy

• The “fugacity coefficient”:

– Relation with departure function:

– P-dependency / T-dependency:

– In terms of T, P:

– In terms of T, V:
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Fugacity and Gibbs Free Energy

• Fugacity can be considered as an evaluation of material 

characteristic using the ideal gas state as the reference.

• For fugacity (and fugacity coefficient) analysis for 

materials other than gas phase, we can applied the 

following concept:

– Therefore,
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Fugacity and Gibbs Free Energy

• Fugacity of a liquid:

– At low P, nonassociative liquid

– Al low P, associative liquid

– Assuming incompressible,

– Alternatively, if f can be evaluated using corresponding states 
(Fig.7.4-1),

• Fugacity of a solid:

– In general, Psat of solid is low and 

– Pressure correction with incompressibility,
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Fugacity and Fugacity coefficient
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Calculation of fugacity from EOS
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Fugacity calculation (I)
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Fugacity calculation (II)
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Fugacity calculation (III)
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Fugacity of a pure liquid
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Fugacity of liquids and solids
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Phase Equilibrium: Gibbs Phase 

Rule

• For a single-component, single-phase system, the state (and 
thermodynamic properties) can be specified by specifying two state 
variables.
– Thus, we say a one-component, one-phase system has 2 degrees of 

freedom.

– In order to fix the total size (and total properties), we also need to specify its 
mass or one of its extensive properties.

• The degree of freedom, F = (No. of variables) – (No. of equations)
– Variables, needed to specify the state of a system.

– Equations, already implied by thermodynamic rules.

• For a single-component system with the presence of more than one 
phase, Gibbs phase rule gives the number of degrees of freedom.
– Let P = number of phases,

It needs 2 state variable for each phase, total number of variables = 2P
Equilibrium conditions (TI=TII, PI=PII, GI=GII) for every two coexistence 
phases, total number of independent equations = 3 (P-1)

F = 2P - 3(P - 1) = 3 – P (for single-component system)

– When P = 1, F = 2 (need two state variables to specify the state).

When P = 2, F = 1 (need one state variable to specify the state).

When P = 3, F = 0 (need no state variables to specify the state). 37



Phase Equilibrium: Gibbs Phase 

Rule

• For a single-component system with more than one phase, 
– We need F (= 3 – P) variables to specify the state of each phase.

– In addition, we need P – 1 thermodynamic properties to specify the mass 
distribution among phases in the system, e.g., in the form as

• For multi-component system with more than one phase

– C: total number of components in the system. 

– For each phase, we need to specify the composition for C-1 components
and two state variables of each phase of a system. Therefore, there are 
(C+1)P variables.

– Equilibrium conditions give C+2 equations between two coexistence 
phases. 
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Phase Transition Properties

• First-order phase transition, e.g., V-L transition
– GV = GL, G is continuous during transition.

– VV  VL, SV  SL, HV  HL, V, S, H are discontinuous during 
transition.

– CV, CP are infinite during phase transition.

• Second-order transition, e.g., structural rearrangement 
of quartz
– V, S, G, are continuous during transition.

– Discontinuous during phase transition occurs at the second 
order derivatives of G, e.g., CP.

• Third-order transition
– …(no expt observation yet)
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Thermodynamic Properties of 

Small System

• For small systems, surface phenomena 
contribute more significantly to the properties of a 
system.
– Surface tension contribution to work (force-

displacement) cannot be neglected. Work due the 
effect of surface tension = s dA.

E-balance for a closed system (no WS),

For spherical drops, V = 4pr3/3 , A = 4pr2.

– Surface charge contribution, if any, and others.
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Thermodynamic Properties of 

Small System
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Thermodynamic Properties of 

Small System

• For the calculation of fugacity of small droplets

– The fugacity of the drop is always larger than the fugacity of the 
bulk liquid at the same T and P.
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Thermodynamic Properties of 

Small System

• Effect of the larger fugacity of the drop than that of the 

bulk liquid at the same T and P:

– The boiling point of small drops will be lower than that of the bulk 

liquid. 

– Or, small drops vaporize more easily. The vaporization process is 

accelerated due to gradual decrease in droplet size.

– Condensation of vapor into drops will not be as easy as that of the 

bulk liquid. A lower T will be needed which is the subcooling.

– Superheating of boiling liquid can also occur.

– Similar phenomena occur in other phase transitions, e.g., 

crystallization, solidification. 

– Ostwald ripening.
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