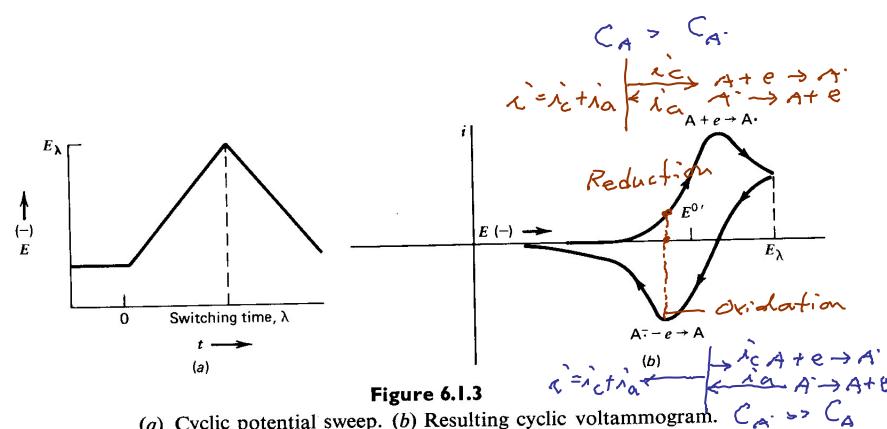

Cyclic Voltammetry


Bing Joe Hwang

EDEN it Est Est Other R potential sweep $E=f(\star)$ ランセ E=Ex+11t (b) Figure 6.1.1

(a) Representation of a portion of the *i-t-E* surface for a nernstian reaction. Potential axis is in units of 60/n mV. (b) Linear potential sweep across this surface. [Reprinted with permission from W. H. Reinmuth, *Anal. Chem.*, 32, 1509 (1960). Copyright 1960, American Chemical Society.]

(a) Linear potential sweep or ramp starting at E_i . (b) Resulting *i-E* curve. (c) Concentration profiles of A and A $\bar{\cdot}$ for potentials beyond E_p .

(a) Cyclic potential sweep. (b) Resulting cyclic voltammogram.

6.2 Nernstian rxn

$$E = E_{1} - 2Jt$$

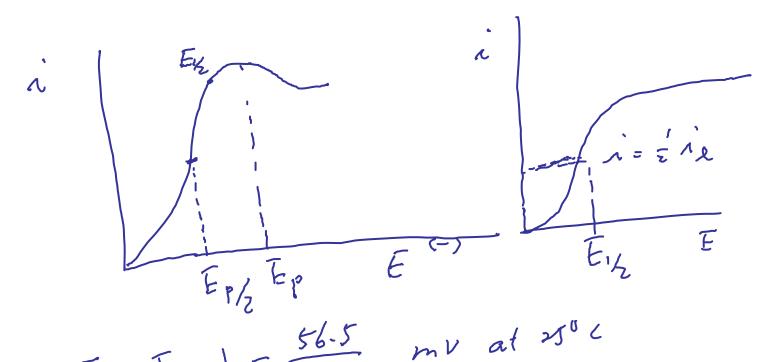
$$Sweep rate V/s . mV/s$$

$$Scan rate$$

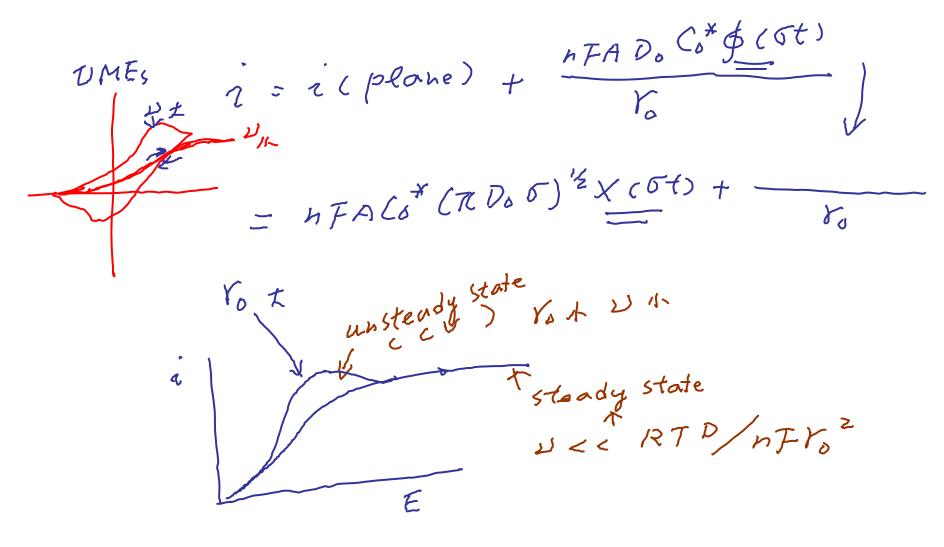
$$E = E_{1} - 2Jt$$

$$Sweep rate V/s . mV/s$$

$$E = exp(\frac{hF}{RT} (E_{1} - E^{-1}))$$


$$= exp(\frac{hF}{RT} (E_{1} - Ut - E^{-1}))$$

$$= exp(\frac{hF}{RT} (E_{1} - E^{-1}))$$


i=nFA(*(xD,6)* ×(6t) ip = n F A Co * (Do 6) 2. 0.4463 6.2.18 n(E-E%) n(E-E/2) できメ1かと) mv at 25° c (planar) (spherical) 4 > 120 100

$$E_p - E_k = \pm \frac{28.5}{n}$$
 mV at $= 5^{\circ} c \left\{ + \text{ Anodic scan} \right\}$

$$E_{Z}^{2}-E_{Z}^{2}=\frac{28.0}{n}\,\mathrm{mV}\,at\,25^{\circ}c$$

6-2-3 Spherical electrodes & UMES

6.2 Nernstian Systems

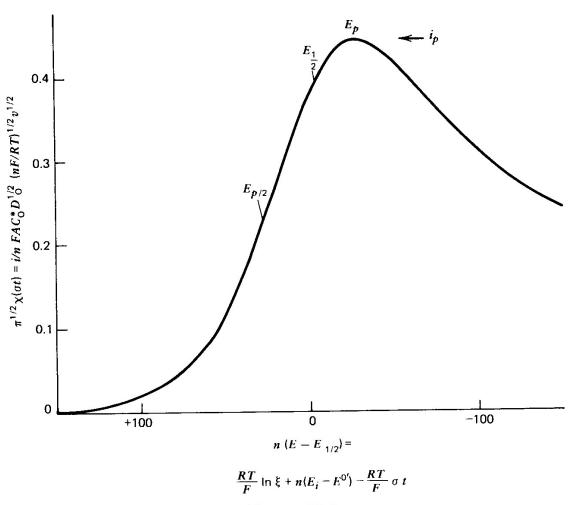


Figure 6.2.1

Linear potential sweep voltammogram in terms of dimensionless current function.

Table 6.2.1 Current Functions $\sqrt{\pi}\chi(\sigma t)$ for Reversible Charge Transfer (3)^a

$(E-E_{1/2})n^b$			$(E-E_{1/2})n$	b	
mV	$\sqrt{\pi}\chi(\sigma t)$	$\phi(\sigma t)$	mV	$\sqrt{\pi}\chi(\sigma t)$	$\phi(\sigma t)$
120	0.009	0.008	-5	0.400	0.548
100	0.020	0.019	-10	0.418	0.596
80	0.042	0.041	-15	0.432	0.641
60	0.084	0.087	-20	0.441	0.685
50	0.117	0.124	-25	0.445	0.725
45	0.138	0.146	-28.50	0.4463	0.7516
40	0.160	0.173	-30	0.446	0.763
35	0.185	0.208	-35	0.443	0.796
30	0.211	0.236	-40	0.438	0.826
25	0.240	0.273	-50	0.421	0.875
20	0.269	0.314	-60	0.399	0.912
15	0.298	0.357	-80	0.353	0.957
10	0.328	0.403	-100	0.312	0.980
5	0.355	0.451	-120	0.280	0.991
0	0.380	0.499	-150	0.245	0.997

^a To calculate the current:

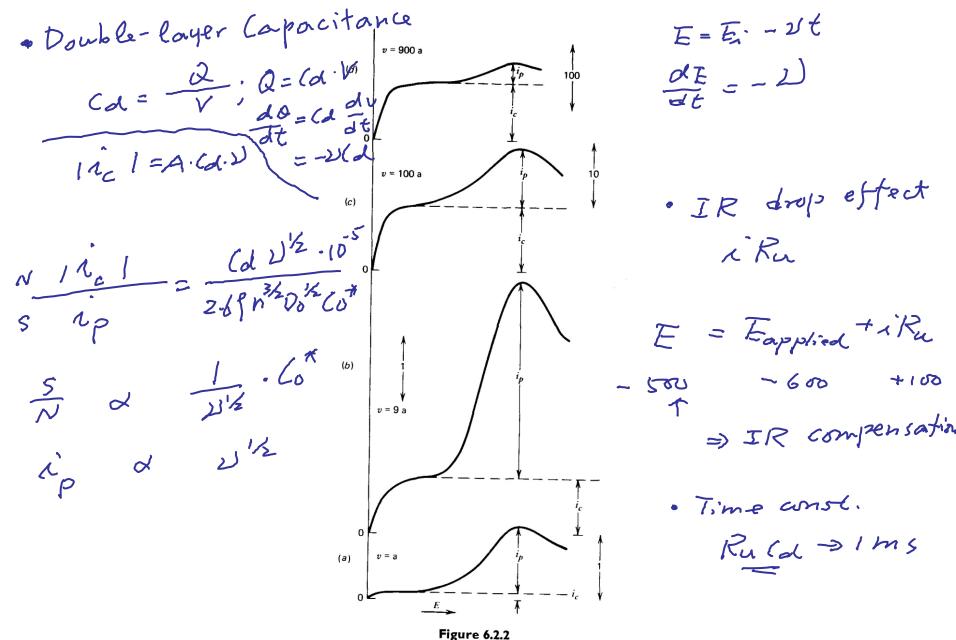
. - . .

^{1.} i = i(plane) + i(spherical correction).

^{2.} $i = nFA\sqrt{\sigma D_0}C_0^*\sqrt{\pi \chi}(\sigma t) + nFAD_0C_0^*(1/r_0)\phi(\sigma t)$.

^{3.} $i = 602 \, n^{3/2} A \sqrt{D_0 v} C_0^* [\sqrt{\pi \chi}(\sigma t) + 0.160(\sqrt{D_0}/r_0 \sqrt{nv})\phi(\sigma t)]$ amperes at 25°. Units for step 3 are: A, cm²; D_0 , cm²/sec; v, V/sec; C_0^* , moles/liter; r_0 , cm.

 $^{^{}b}E_{1/2} = E^{0'} + (RT/nF) \ln(D_{R}/D_{0})^{1/2}$


For reversible redox couples

$$1.i_{p} = 0.4463 \text{nFAC}_{O}^{*} (\text{nF/RT})^{1/2} v^{1/2} D_{O}^{1/2}$$
$$= 2.69 \times 10^{5} \text{ n}^{3/2} \text{ A } D_{O}^{1/2} v^{1/2} C_{O}^{*}$$

2.
$$E_p - E_{p/2} = 2.2 (RT/nF) = 56.6/n \text{ mV at } 25^{\circ}\text{C}$$

$$3.E_p = E_{O/R}^{o'} - 0.028.5/n \text{ V}$$
 (independent of ν)

4.
$$i_p = i_{p'} - i_{background}$$
; $i_{p'}$: measured peak current

Effect of double-layer charging at different sweep rates on linear potential sweep voltammogram. Curves are plotted with the assumption that C_a is independent of E. The magnitude of the charging current, i_c , and the faradaic peak current, i_p , is shown. Note that the current scale in (c) is $10 \times$ and in (d) is $100 \times$ that in (a) and (b).

6-3 Totally irreversible runs. $B.c.2 = \frac{2}{PFA} = Do(\frac{\partial Co(x,t)}{\partial t})|_{X=0} = \frac{lef}{t} Co(o.t)$ let = letin e = letin e afut 6°exp(-2f(E,-E")) 1 = OFACO* (TDob) ** X(bt) ip = - 2/2 A (0 0 0 / 7/2 X) max 0.4958 (\$ cbt) max Ep = f(v). => | Ip - Ip | = (27.7 mV at >5°C)

Riheutic

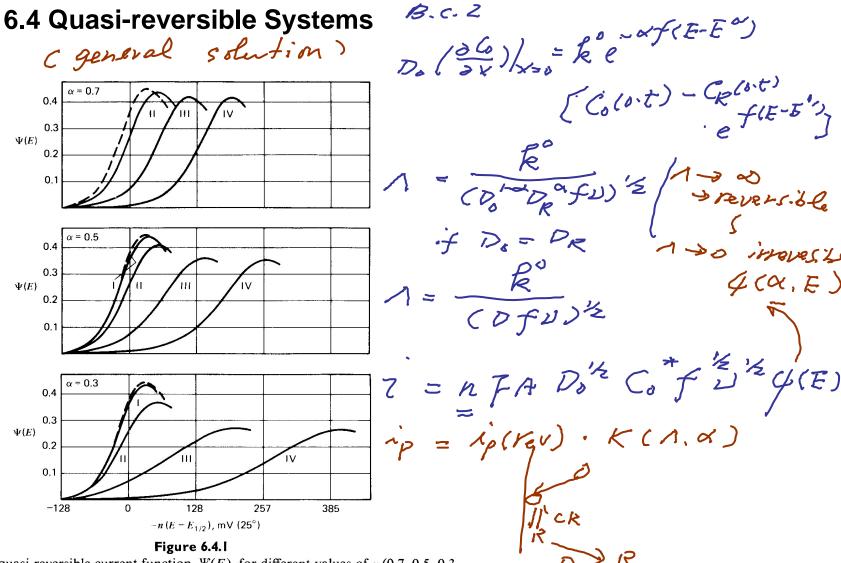
parameters

Table 6.3.1 Current Functions $\sqrt{\pi}\chi(bt)$ for Irreversible Charge Transfer $(3)^{a,b}$

	4				. 0	- c Queul
Potential, mV	$\sqrt{\pi}\chi(bt)$	$\phi(bt)$	Potential, mV	$\sqrt{\pi}\chi(bt)$	Dime sionle $\phi(bt)$ 0.323 ($AFRP$) ($E-E'$) 0.396 0.482 0.600 0.685 0.694 0.755	es gas
160	0.003		15	0.437	0.323 (QF/R) (E-E))
140	0.008		10	0.462	0.396	13/5
120	0.016		5	0.480	$0.482 \rightarrow 0.570$	6)/6
110	0.024		0	0.492	0.600	
100	0.035		-5	0.496	0.685	C
90	0.050		-5.34	0.4958	0.694	<i>† D</i>
80	0.073	0.004	-10	0.493	0.755	
70	0.104	0.010	-15	0.485	$0.823 \mathcal{F} - \downarrow (2)$	
60	0.145	0.021	-20	0.472	0.895	
50	0.199	0.042	-25	0.457	0.952 reversible	
40	0.264	0.083	-30	0.441	0.992	
35	0.300	0.115	-35	0.423	1.00	
30	0.337	0.154	-40	0.406	1.00 Fr - F1/2	
25	0.372	0.199	-50	0.374	F /2	
20	0.406	0.253	-70	0.323	T+ fl	<i>u</i>)

^a The potential scale is $(E - E^{o'})\alpha n_a + (RT/F) \ln \sqrt{\pi D_0 b}/k^0$.

2.
$$i = nFA\sqrt{bD_0}C_0^*\sqrt{\pi}\chi(bt) + nFAD_0C_0^*(1/r_0)\phi(bt)$$
.

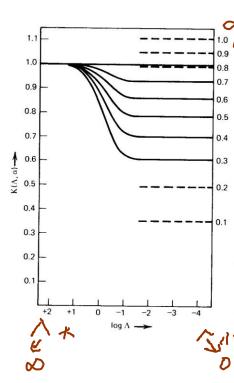

3.
$$i = 602 n(\alpha n_a)^{1/2} A \sqrt{D_0 v} C_0^* [\sqrt{\pi} \chi(bt)] + 0.160 (\sqrt{D_0}/r_0 \sqrt{\alpha n_a v}) \phi(bt)$$
 (at 25°).

Units for step 3 are the same as in Table 6.2.1.

Ep + f(2)) starte)

^b To calculate the current:

^{1.} i = i(plane) + i(spherical correction).



Variation of quasi-reversible current function, $\Psi(E)$, for different values of α (0.7, 0.5, 0.3, as indicated) and the following values of Λ : I, $\Lambda = 10$; II, $\Lambda = 1$; III, $\Lambda = 0.1$; IV, $\Lambda = 10^{-2}$. Dashed curve is for a reversible reaction.

$$\Psi(E) = i/nFAC_0^*D_0^{1/2}(nF/RT)^{1/2}v^{1/2}$$

$$\Lambda = k^0/D^{1/2}(nF/RT)^{1/2}v^{1/2} \quad \text{(for } D_0 = D_R = D)$$

[From H. Matsuda and Y. Ayabe, Z. Elektrochem., 59, 494 (1955), with permission.]

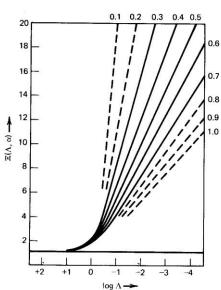

ip = ip(Vev). K(X, X)

Figure 6.4.2

Variation of $K(\Lambda, \alpha)$ with Λ for different values of a. Dashed lines show functions for totally irreversible reaction.

$$K(\Lambda, \alpha) = i_p/i_p(\text{rev})$$

[From H. Matsuda and Y. Avabe, Z. Electrochem., 59, 494 (1955), with permission.1

$$E_{p} - E_{p} = \Delta (\Lambda, \alpha) \left(\frac{RT}{RF} \right)$$

$$= 26 \Delta (\Lambda, \alpha) \text{ at } 25^{\circ} C$$

$$E_{p} - E_{12} = -\frac{RT}{4F} = (\Lambda, \alpha)$$
Figure 442

Figure 6.4.3

Variation of $\Xi(\Lambda, \alpha)$ with Λ for different values of a. Dashed lines show functions for totally irreversible reaction.

$$\Xi(\Lambda, \alpha) = -(E_p - E_{1/2}) \frac{nF}{RT}$$

[From H. Matsuda and Y. Ayabe, Z. Elektrochem., 59, 494 (1955), with permission.]

1 = 15 (R° z 0.3 DE) reversible

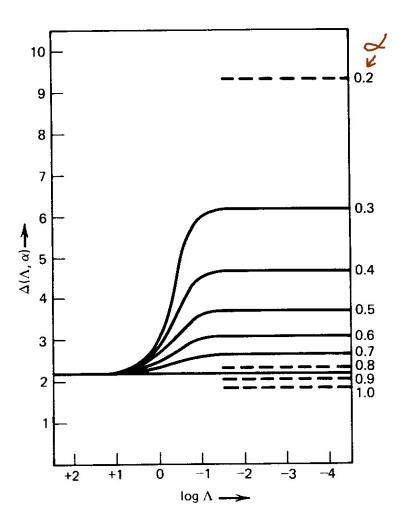


Figure 6.4.4

Variation of $\Delta(\Lambda, \alpha)$ with Λ and α . Dashed lines show values for totally irreversible reactions.

$$\Delta(\Lambda, \alpha) = (E_{p/2} - E_p) \frac{nF}{RT}$$

[From H. Matsuda and Y. Ayabe, Z. Elektrochem., 59, 494 (1955), with permission.]

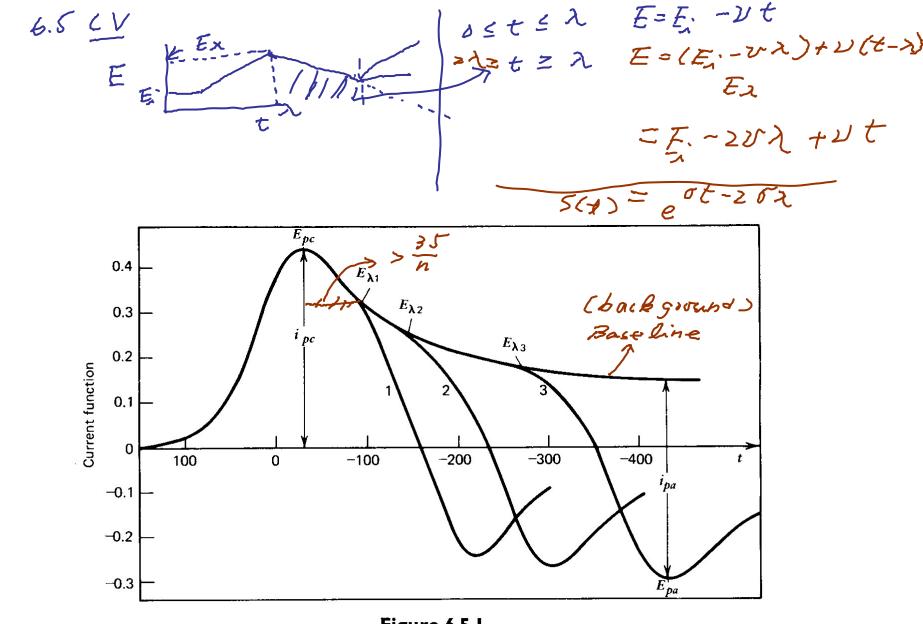
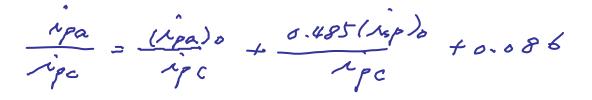



Figure 6.5.1 Cyclic voltammograms for reversal at different E_{λ} values with presentations as they appear on a strip-chart recorder (*i-t* curves).

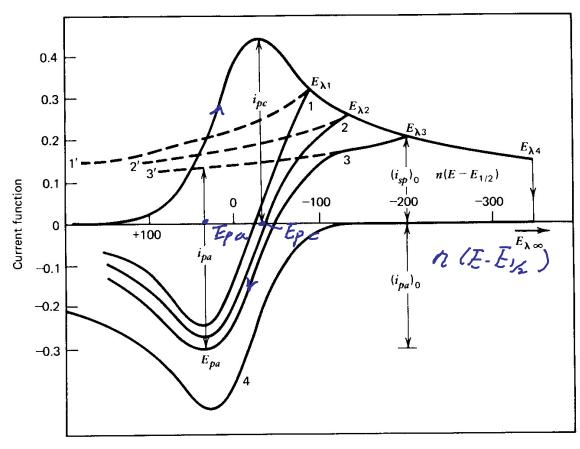


Figure 6.5.2

Cyclic voltammograms under the same conditions as in Figure 6.5.1 with presentations as they appear on X-Y recorder (i-E curves). E_{λ} of (1) $E_{1/2} - 90/n$; (2) $E_{1/2} - 130/n$; (3) $E_{1/2} - 200/n$ mV; (4) for potential held at $E_{\lambda 4}$ until the cathodic current decays to zero. [This curve results from reflection of the cathodic i-E curve through the E axis and then through the $n(E - E_{1/2}) = 0$ line. The curves in (1), (2), and (3) result by addition of this curve to the decaying current of the cathodic i-E curve.]

Table 6.5.1

Separation of Peak Potentials for a Nernstian Wave as a Function of E_{λ}^{a}

$n(E_{pc}-E_{\lambda})$	$n(E_{pa}-E_{pc})$
(mV)	(mV)
71.5	60.5
121.5	59.2
171.5	58.3
271.5	57.8
∞	57.0

^a Adapted from Reference 3.

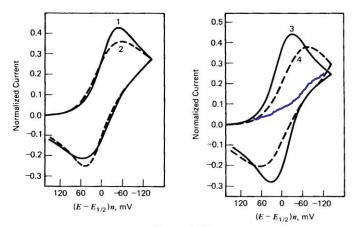


Figure 6.5.3

Theoretical cyclic voltammograms showing effect of ψ and α on curve shape. Curve 1: — $\psi = 0.5$, $\alpha = 0.7$. Curve 2: … $\psi = 0.5$, $\alpha = 0.3$. Curve 3: — $\psi = 7.0$, $\alpha = 0.5$. Curve 4: … $\psi = 0.25$, $\alpha = 0.5$. [Reprinted with permission from R. S. Nicholson, *Anal. Chem.*, 37, 1351 (1965). Copyright 1965, American Chemical Society.]

Table 6.5.2 Variation of Peak Potential Separation (ΔE_p) with Kinetic Parameter Ψ (9) $^{\circ}$

$n(E_{pa}-E_{pc})$				
ψ	mV			
20	61			
7	63			
6	64			
5	65			
4	66			
3	68			
2	72			
1	84			
0.75	92			
0.50	105			
0.35	121			
0.25	141			
0.10	212			

^a For $E_{\lambda} = E_{p} - 112.5/n$ and $\alpha = 0.5$. ψ is defined in equation 6.5.5.

in equation 6.5.3 b T = 25 °C.

(reversible)

cirreversible)

6.6. Multiple components charge évans fer rxns.

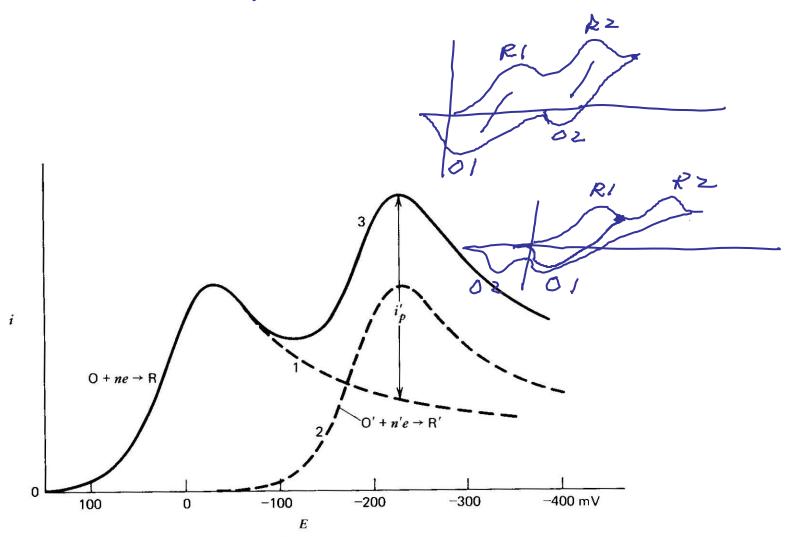


Figure 6.6.1

Voltammograms for solutions of (1) O alone; (2) O' alone and, (3) mixture of O and O', with n = n', $C_0^* = C_{0'}^*$, and $D_0 = D_{0'}$.

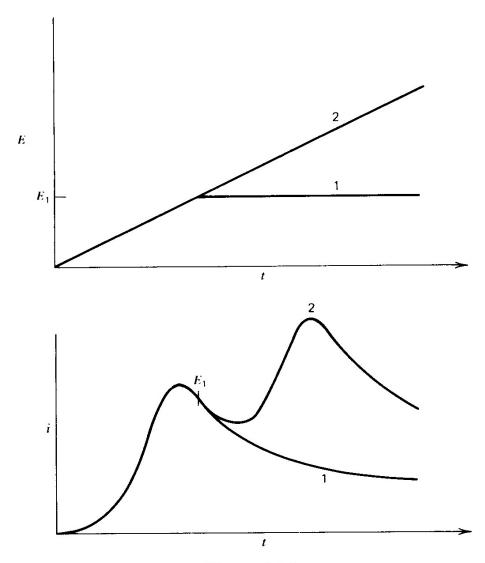


Figure 6.6.2

Method for obtaining baseline for measurement of i'_p of second wave. Upper curves: potential programs. Lower curves: resulting voltammograms with curve 1 potential stopped at E_1 , curve 2 potential scan continued. System as in Figure 6.6.1.

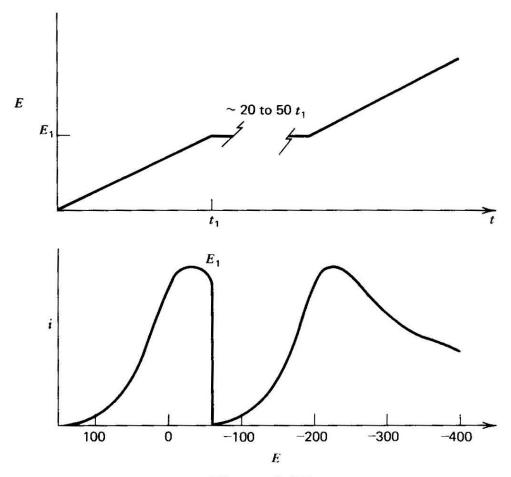
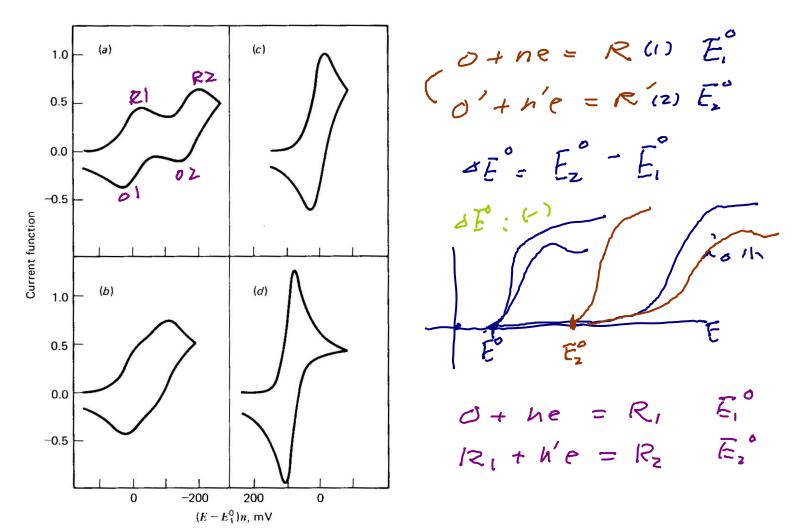
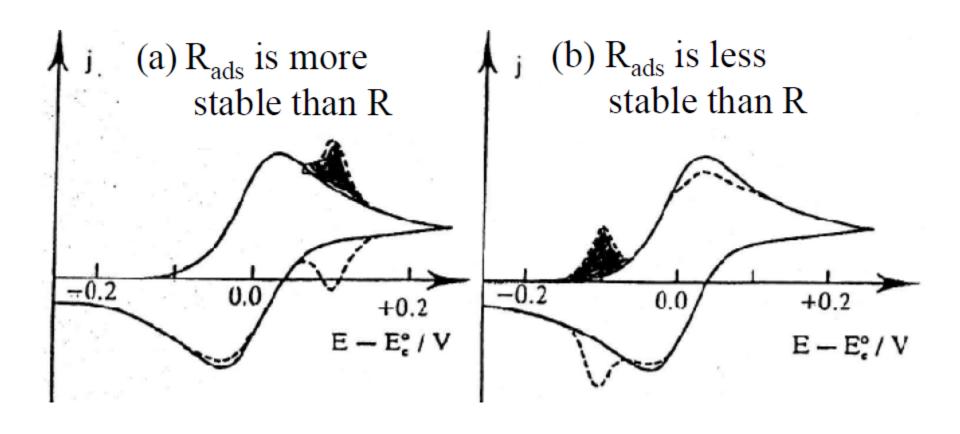
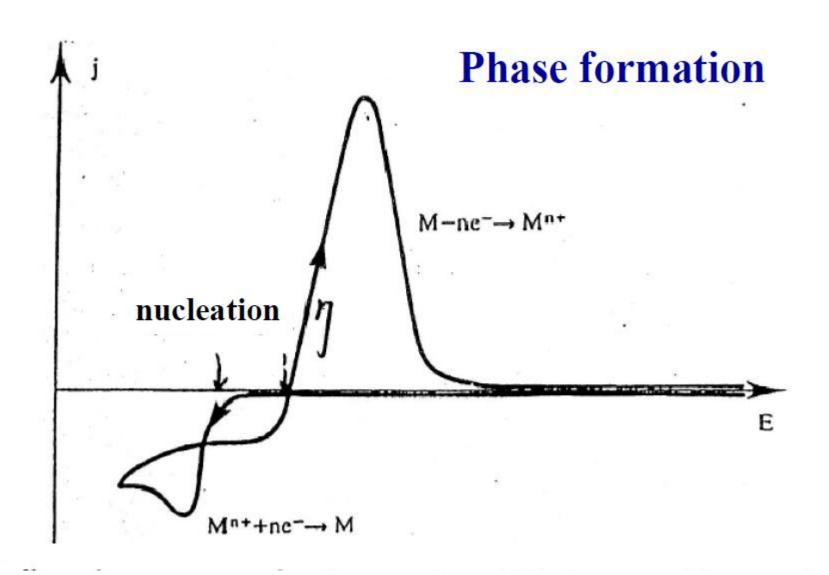
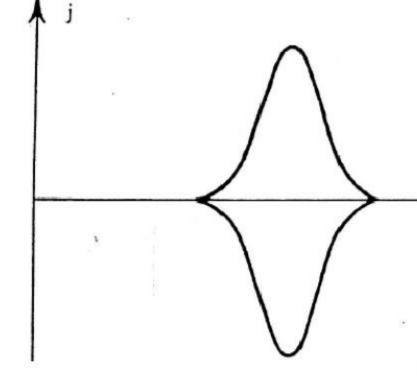



Figure 6.6.3


Method of allowing current of first wave to decay before scanning second wave. Upper curve: potential program. Lower curve: resulting voltammogram. System as in Figure 6.6.1.




Figure 6.6.4

Cyclic voltammograms for a reversible two-step system. Current function is analogous to $\chi(z)$ defined in (6.2.16). $n_2/n_1 = 1.0$. (a) $\Delta E^0 = -180$ mV. (b) $\Delta E^0 = -90$ mV. (c) $\Delta E^0 = 0$ mV. (d) $\Delta E^0 = 180$ mV. [Reprinted with permission from D. S. Polcyn and I. Shain, Anal. Chem., 38, 370 (1966). Copyright 1966, American Chemical Society.]

O adsorbed on electrode

$$1. \Delta E_{\rho} = 0 \text{ mV}$$

2.
$$-j_{p}^{C}/j_{p}^{A} = 1$$

4. E_p are independent of v

5.
$$q_A = q_C \le q_{monolayer}$$

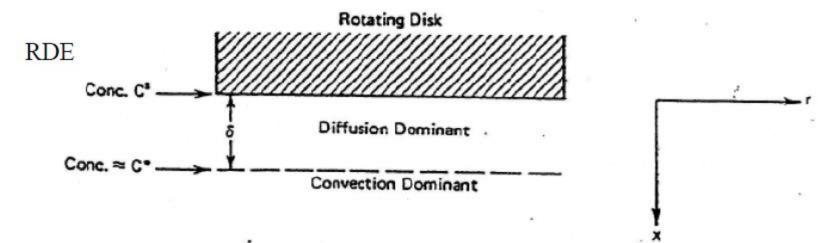
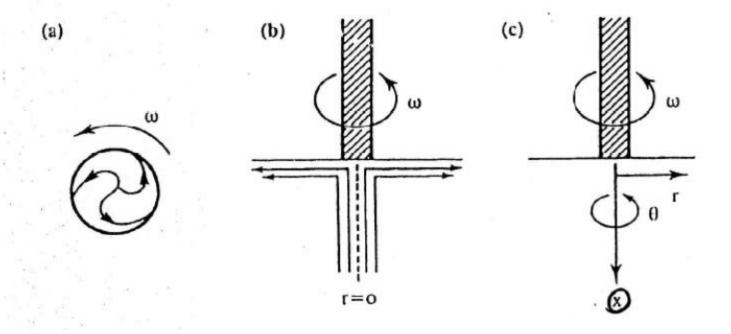
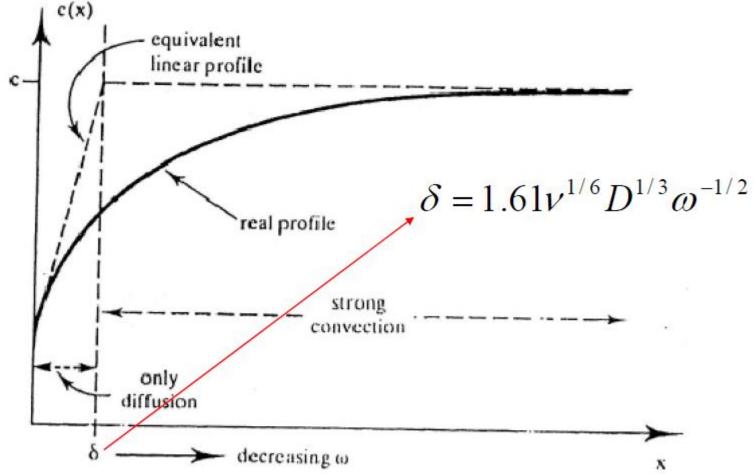
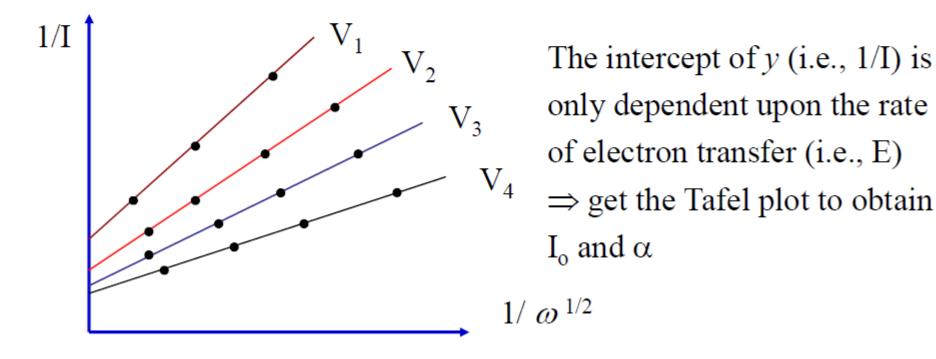



Figure 11-3. Model for convective diffusion.




Figure 6.7 Concentration profile for the electroactive species using the concept of a Nernst boundary layer.

$$i_L = nFD \left(\frac{dC}{dx}\right)_{x=0} = nFD \frac{C}{\delta}$$
 $i_L = \text{limiting current, A}$ $i_L = \text{limiting current, A}$ $\omega = \text{limiting current$

Koutecky-Levich plots

$$\frac{1}{I} = \frac{1}{nFAk_{et}C} + \frac{1.61v^{1/6}}{nFACD^{2/3}} \frac{1}{\omega^{1/2}}$$

As
$$\omega \to \infty$$
, $\Rightarrow \frac{1}{I} = \frac{1}{nFAk_{et}C}$

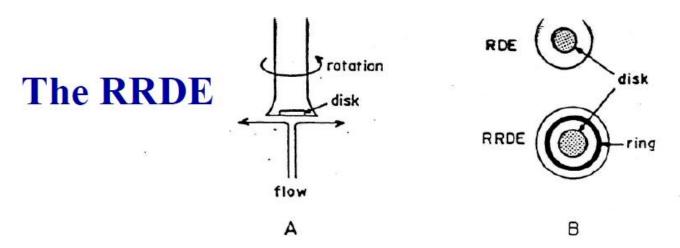


Figure 3.39 (A) Rotating-disk electrode with hydrodynamic flow pattern. (B) Bottom view of rotating-disk electrode (RDE) and rotating ring-disk electrode (RRDE).

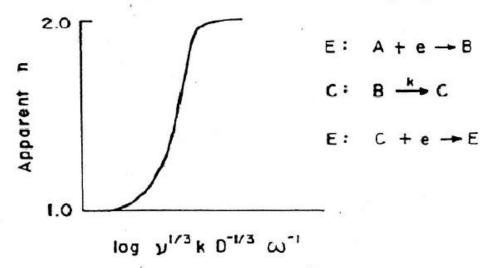
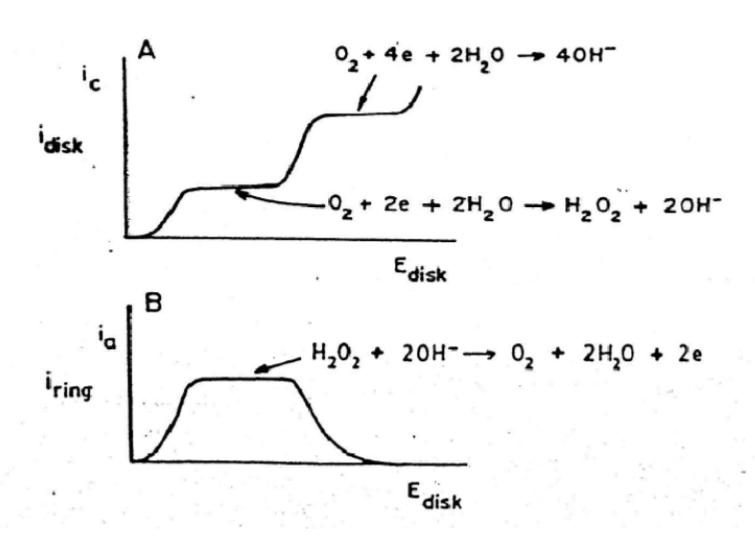
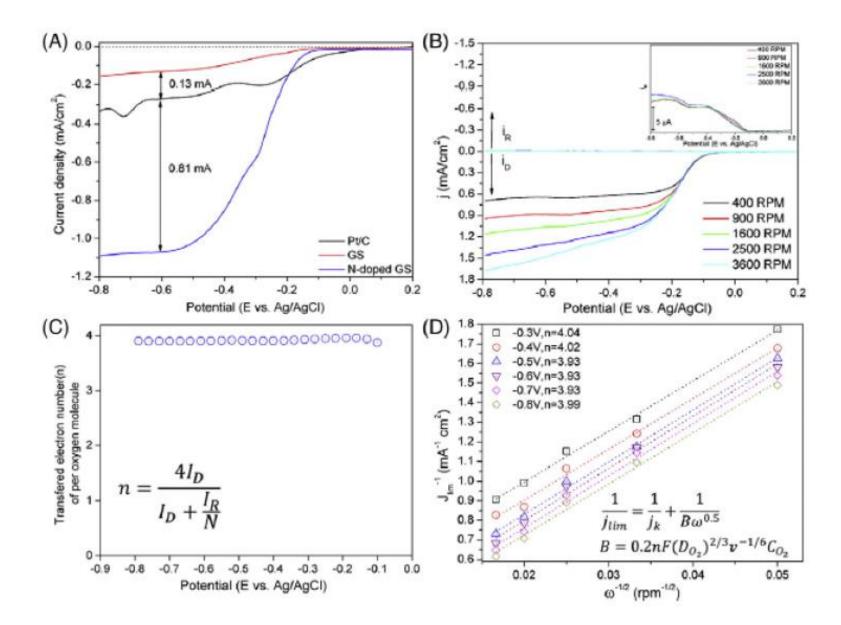




Figure 3.40 Variation in "apparent n" as a function of angular velocity of an RDE for the ECE mechanism.

The ORR on RRDE

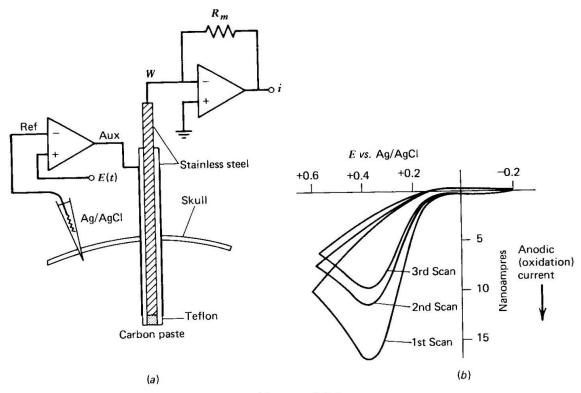


Figure 6.6.5

Application of cyclic voltammetry to in vivo analysis in brain tissue. (a) Carbon paste working electrode, stainless steel auxiliary electrode (18-gauge cannula), Ag/AgCl reference electrode, and other apparatus for voltammetric measurements. (b) Cyclic voltammogram for ascorbic acid oxidation at C-paste electrode positioned in the caudate nucleus of an anesthetized rat. [From P. T. Kissinger, J. B. Hart, and R. N. Adams, Brain Res., 55, 20 (1973), with permission.]